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Abstract Microalgae-derived oils have potential as a biofuel feedstock. To produce
microalgal oils at a large scale, large amounts of nutrients and energy are needed to grow
the algae. In this study, we evaluated three types of agricultural fertilizer (AF)-based culture
media (AF1, AF2, and AF3) based on a previously published enriched seawater (ES) medium
to produce biomass and oils from Thalassiosira sp. Under laboratory conditions, the highest
cell productivity of Thalassiosira sp. was obtained with the AF3 medium. Thalassiosira sp.
cultured in the AF3 medium produced 10.4 ± 0.9 mg L−1 day−1oils, which is significantly
higher than the 5.8 ± 0.7 mg L−1 day−1produced in the ES medium. The higher production was
due to the presence of nitrate and trace elements, both of which played roles in enhancing
biomass and oil content, respectively. During cell growth, resting spores appeared inside the
cells and were a marker to harvest the cells. Because of the abundant availability of sunlight in
the tropics during the year, the oil production of Thalassiosira sp. in the AF3 medium was
scaled up using outdoor photobioreactors under different weather conditions (rainy and dry
seasons). Thalassiosira sp. produced more unsaturated fatty acids during the rainy season and
produced more saturated fatty acids during the dry season. This study also demonstrated that it
was possible to culture Thalassiosira sp. under outdoor conditions using a low-cost
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agricultural fertilizer-based culture medium (AF3 medium) to produce biodiesel feedstock
with an annual production of 8.1 ± 0.4 t ha−1 during the dry season and of 23.9 ± 6.8 t ha−1

during the rainy season.

Keywords Agricultural fertilizer-basedmedium . Oil productivity . Outdoor cultivation .

Thalassiosira sp. . Tropical marine diatom

Introduction

The conversion of solar energy to biofuel through photosynthesis by microalgae has received
tremendous attention for decades due to the higher growth rates and richer in oil content of
microalgae (30–60% of dry weight) compared to terrestrial crops [1–3]. Biodiesel from
microalgae is known as one of the most environmentally friendly renewable energy resources
because of the capability to reduce greenhouse gas emissions [4, 5]. Currently, one of the main
obstacles to the commercial production of microalgae oils is the cost of biomass production,
including additional nutrients, electricity, and water, which is higher than the cost to produce
common crop oils [1, 3]. Hence, intensive studies to reduce the costs of microalgae biomass
production should be conducted.

Agricultural fertilizer-based medium used for culturing microalgae is critical to producing
biofuel owing to its high availability and low cost [6, 7]. Agricultural fertilizers contain
phosphorus and nitrogen, which are essential nutrients for marine diatoms [8, 9] and green
algae [10]. Previously, we found that the tropical marine Thalassiosira sp. grew well in an
enriched seawater (ES) medium [11]. However, the availability of additional nutrients may
hinder the use of ES medium for large-scale algal biomass production. Thus, enhancing
biomass production using an agricultural fertilizer-based medium is interesting.

During the production of algal biomass at a large scale, microalgae cultured under direct
sunlight exposure may reduce energy costs. Some outdoor models have been developed to
culture microalgae from small to economic scales [12–15], especially in areas of the subtropics
with mild climates, such as Spain [16], Japan [17], China [14, 18], Australia [19, 20], and
Israel [21]. The microalgal productivity ranged from 10 to 30 g m−2 day−1 depending on
geographic area and the prevailing weather conditions [15, 16, 18, 22]. As a marine country in
the tropics, Indonesia has the potential for microalgal biofuel production because the basic
requirements for growing microalgae, such as sunlight, seawater, and favourable ambient air
temperature, are abundant and available all year long. However, reports on outdoor algal oil
productivity in the tropics have been very limited thus far. Outdoor microalgal cultivation in
the tropics faces many challenges due to environmental stress including sunlight intensity,
evaporation, temperature, and contamination risks. Thus, to produce microalgal biomass
outdoors, closed photobioreactors are more effective than open-culture systems [17, 23–25].

The tropical marine diatom Thalassiosira sp. is a good candidate for producing oils [11].
The natural oils of Thalassiosira sp. contain a mixture of free fatty acids (saturated fatty acids
(SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)), neutral
lipids, glycolipids, phospholipids, and other components. In this study, we evaluated the
development of Thalassiosira sp. in agricultural fertilizer-based media to grow biomass
followed by observation of the resting spores of Thalassiosira sp. to identify oil accumulation
in the cells. The best medium to produce Thalassiosira sp. biomass in the outdoor
photobioreactors was chosen, and the oil content, including total fatty acids produced by the
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cells in both rainy and dry seasons, was measured. This paper reports the growth profile of
Thalassiosira sp. in different agricultural fertilizer-based media, the characteristics of intracel-
lular oil accumulation, and the oil productivity of Thalassiosira sp. cultured outdoors.

Materials and Methods

Chemicals and Reagents

All chemicals used for media preparation (both Walne medium and ES medium), lipid
extraction, esterification, and fatty acids profile analysis were pro-analysis grade (Merck,
Germany). Agricultural fertilizers of urea, TSP-36, NPK™, and Si-P-(PG)™ were purchased
from the local agriculture market, and industrial grades of FeCl3, anhydrous Na2SiO3, and
anhydrous Na2EDTAwere purchased from a local supplier. Nile red, capric acid (C10:0) as an
internal standard, and fatty acid methyl ester (FAME) mix C4–C24 as an external standard
were purchased from Sigma-Aldrich, USA.

Microalgae Strain and Culture Maintenance

The source and maintenance of the tropical marine diatom Thalassiosira sp. have been described
previously [11]. The cultures were periodically regenerated to remain in the growth phase.

Evaluation of Agricultural Fertilizer-Based Media

To obtain a 10× cell/mL cell density of Thalassiosira sp., three types of agricultural fertilizer-based
media, namely AF1 medium, AF2 medium, and AF3 medium, were first evaluated in indoor
conditions (Table 1). Thalassiosira sp. cells that were cultured in the medium containing a similar
N/P/Si ratio of 11.7:1:1.34 (w/w/w) and the enriched seawater (ES)mediumwere used as the control
[11]. Thalassiosira sp. cells were cultured in simple air-lift photobioreactors made of transparent
glass bottles with a working volume of 800mL. Cultures with an initial density of 2 × 105 cell mL−1

were illuminated under a light intensity of 95μmol m−2 s−1 at room temperature with a photoperiod
of light/dark = 12:12 h, salinity of 28 ppt, pH 8.0–8.7, and free air bubbling. The cells were counted
daily under a light microscope using an improved Neubauer-haemocytometer (Germany) to
determine cell density, specific growth rate, and doubling time. The experiments were performed
in triplicate, and the results were given as the average values and standard deviation. Statistical
analysis of the data was carried out using theMicrosoft Excel 2013 software. A one-way analysis of
variance was used to compare each data set with a confidence level of 95% and P values <0.05.
Significant differences among the data were further analysed using a least significant difference test.
Finally, the best medium was chosen to produce biomass in outdoor cultivation.

Determination of Biomass and Oil Productivity under Laboratory Conditions

The growth of Thalassiosira sp. in urea-ES medium (ES medium with urea as the N source),
nitrate-ES medium (ES medium with NaNO3 as the N source), and TM-ES medium (ES
medium containing additional trace minerals) was evaluated separately. All of the media
contained a final nitrogen concentration of 11.7 mg L−1. The amount of trace minerals in
1 L medium was 0.02 mg CuSO4.5H2O, 0.021 mg ZnCl2, 0.36 mgMnCl2.4H2O, and 0.02 mg
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CoCl2.6H2O. Thalassiosira sp. cells cultured in the AF3 medium were used as a control. The
cells were cultured under the same conditions as mentioned above. The change in cell number
and cell morphology (in particular, resting spore formation) was monitored daily under a light
microscope. Intracellular neutral lipid accumulation was measured using the Nile red dye
fluorescence spectrophotometer method [26]. Thalassiosira sp. cells harvested on the 13th day
were centrifuged at 15,000×g at 4 °C for 30 min, and algal oil was extracted from the cells
using the method of Bligh and Dryer [27]. The productivity of biomass (PB) and oil (PO) of
Thalassiosira sp. was determined according to Eqs. 1 and 2, respectively. The experiments
were performed in triplicate, and all data were analysed using a two-tailed Student’s t test. A
significant difference among treatments was determined by a degree of error of P < 0.05.

PB mg L−1 day−1
� � ¼ Dried weight biomass mgð Þ

Volume of culture Lð Þ � Time dayð Þ ð1Þ

PO mg L−1 day−1
� � ¼

Dried biomass yield
mg

L

� �
�%Oil content

mgoil

mgbiomass
� 100

� �

Time dayð Þ ð2Þ

Determination of Biomass and Oil Productivity in Outdoor Conditions

To scale up the outdoor algal biomass production, Thalassiosira sp. cells were cultivated in AF3
medium using air-lift column photobioreactors based on Indonesian patent no. ID P0030250with

Table 1 Nutrient composition and
concentration of media Media Concentration

(mg L−1)

ES medium
Urea (p.a.) 25
NaH2PO4.2H2O (p.a.) 5
Na2SiO3.5H2O (p.a.) 10
FeCl3.6H2O (p.a.) 6
Na2EDTA.2H2O (p.a.) 70

AF1 medium
Urea fertilizer (containing 46% N) 25
TSP-36™ fertilizer (containing 36% P2O5) 5.4
Si-P-(PG)™ fertilizer (containing 6–8% P2O5,
and 36–42% SiO2)

8

FeCl3 (industrial grade) 3.3
Na2EDTA (industrial grade) 70

AF2 medium
NPK fertilizer ™ (containing 4.5% NaNO3,
20.5% urea, 5% Na2HPO4, and
20% K2O)

115

Si-P-(PG)™ fertilizer 8
FeCl3 (industrial grade) 3.3
Na2EDTA (industrial grade) 70

AF3 medium
NPK fertilizer ™ 115
Na2SiO3 (industrial grade) 6
FeCl3 (industrial grade) 3.3
Na2EDTA (industrial grade) 70
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a diameter of 15 in. and a height of 1 m. Ambient air was bubbled through the bottom of each
photobioreactor at a flow rate of 25 L min−1 using a compressor pump. Before use, all medium
and photobioreactors were sterilized by soaking them in 63 mg L−1 NaClO for 24 h, followed by
Na2S2O3 neutralization with a final concentration of 95 mg L−1 for 16 h and free air bubbling.
Activated cells of Thalassiosira sp. obtained from indoor cultures were cultivated in outdoor
photobioreactors with an initial density of 5 × 105 cell mL−1 and the cells grew under direct
natural sunlight. The incident light intensity and temperature of the medium were recorded at 5-
min intervals using data logger equipment. The cells were counted daily at 09.00 a.m. The
changes in cell number and cell morphology (in particular, resting spore formation) were
monitored daily under a light microscope. The presence of resting spores was indicated by cells
with dark pigmented small circles and fragmented chloroplasts. The outdoor experiments were
conducted on a campus (6o 51′ 21.3″ S, 107o 36′ 42.5″ E) over two different seasons (between
July and October 2014). Cultures at the stationary phase were harvested by a filtration technique
using Masini™ cotton cloth and then weighed. The biomass was freeze-dried, and lipids were
extracted [27]. The biomass and oil productivity were determined as described above. Areal oil
productivity (POA) of Thalassiosira sp. was calculated according to Eq. 3. The conversion factor
from PO to POA was 3.65, derived from 365 (converting day to year) multiplied by 10−9

(converting biomass yield from mg to ton) and 107 (converting culture volume from L to ha).

POA ton ha−1 year−1
� � ¼ PO � Conversion factor ð3Þ

Fatty Acid Analysis

FAME was prepared by esterification of Thalassiosira sp. oil. A mixture of 40 mg
Thalassiosira sp. oil and 2 mmol NaOH in methanol solution was incubated for 12 h at 55–
60 °C with continuous stirring or shaking, followed by addition of 4 mL of 2.5% H2SO4 and
incubation for 1 h at 55–60 °C with continuous stirring. Prior to FAME extraction, 10 mg of
capric acid methyl ester, 3 mL n-hexane, and 6 mL 0.5% NaCl (w/v) were added to the
mixture, and the FAME was centrifuged at 15,000×g at 4 °C for 10 min. The supernatant was
analysed using gas chromatography (GC) equipped with a flame ionization detector (FID) on
an HP5 column, 30 m × 0.25 mm i.d × 0.25 μm. The injector and detector temperature were
260 °C. The oven temperature was set at 140 °C and increased from 180 to 270 °C at a rate of
4 °C min−1 and remained at 270 °C for 7.5 min. A set FAME standard (containing 37 different
components of FAME) was also injected into the GC-FID under the same conditions. To
confirm the FAME components, GC-MS of the FAME standard was also carried out.

Results and Discussion

Growth of Thalassiosira sp. in Agricultural Fertilizer Media

To obtain a low-cost culture medium for large-scale cultivation of Thalassiosira sp., three
types of agricultural fertilizer-based medium (AF1, AF2, and AF3 medium) were evaluated,
and an ES medium was used as a control (Table 1). Starting with an initial cell density of
2 × 105 cell mL−1, the Thalassiosira sp. cells cultured in the ES medium required 6 days to
reach the end of the exponential phase, with a doubling time of 1.5 days and then a stationary
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phase of 2 days (Fig. 1). Maximum cell density determined on the 6th day was
5.60 × 106 cell mL−1 (Table 2). Compared with cells grown in the ES medium, the maximum
cell density in the AF2 medium (5.49 × 106 cell mL−1) was not significantly different, but it
was significantly different from the cell density in the AF1 medium (4.32 × 106 cell mL−1)
(P < 0.05). In terms of cell density, Thalassiosira sp. cells showed a better development in the
AF2 medium than in the AF1 medium, as the phosphorus source in the AF2 medium was of a
more soluble form. Conversely, the source of phosphorus in the AF1 medium, TSP™ fertilizer,
was obtained from phosphate rock and had low solubility. This result indicated that the
availability of dissolved phosphorus in the medium was essential for cell development.

Surprisingly, Thalassiosira sp. cells cultured in the AF3 medium remained in the exponential
phase on the 5th day, whereas the cells cultured in the AF2 medium had reached the stationary
phase by the 5th day. The cells grew well in the AF3 medium with soluble silicate and phosphate
but did not grow well in the AF2 medium, as the silicate was supplied from Si-P-PG™ fertilizer,
which is available in the form of hard granulated solid with low solubility. This result indicated
that soluble silicate played an essential role in cell development, particularly during the formation
of the cell wall. The maximum cell density of Thalassiosira sp. cells cultured in the AF3medium
on the 7th day was 1.4 times higher than that in the AF2 medium. To scale up the cultivation of
Thalassiosira sp. cells outdoors, the AF3 medium was chosen for subsequent experiments. In
terms of additional nutrient cost per litre medium, AF3 medium costs IDR 117, and the ES
medium costs IDR 547. (Note: 1 IDR is roughly equal to US$0.000074). Beal et al. [15] reported
that the cost to produce 1 L of algae oils was US$2. Thus, the AF3mediumwas found to be cost-
effective to produce a large amount of Thalassiosira sp. biomass.

Characteristics of Intracellular Oil Accumulation

To understand which minerals in the AF3 medium enhance biomass productivity, the growth
of Thalassiosira sp. cells was further evaluated. Commercial NPK™ fertilizer used in the AF3
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Fig. 1 Growth profiles of Thalassiosira sp. in four different agricultural fertilizer-based media
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medium contained two types of N in the forms of nitrate and urea, as well as additional trace
minerals (B, Ca, Co, Cu, Fe, Mg, Mn, Mo, S, and Zn) in unknown amounts. Here, we
compared the growth of Thalassiosira sp. cells cultured in the urea-ES medium, nitrate-ES
medium, and urea-TM-ES medium. Then, the biomass productivity, the oil content, and the
fatty acid composition were determined. Figure 2 shows Thalassiosira sp. cells growing in all
media reached the end of the exponential phase by the 10th day. The Thalassiosira sp. cells
cultured in the medium containing nitrate (nitrate-ES or AF3 medium) were more concentrated
than those cultured in the medium containing urea (urea-ES or urea-TM-ES medium). These
findings indicated that nitrate was easily absorbed by Thalassiosira sp. cells and resulted in
good cell development. This result is consistent with the cell development of other diatoms
[28] and green microalgae [29–33], both of which require nitrate as the N source, as previously
reported. Diatoms have traditionally been thought to be the primary consumers of nitrate in the
environment, so they can grow very rapidly under high nitrate concentration conditions and
cause massive blooms [34].

To understand whether cell development is related to oil accumulation, we monitored oil
accumulation daily during the development of Thalassiosira sp. cells using Nile red fluores-
cence (Fig. 3). During Thalassiosira sp. growth, cells photosynthesized to produce energy for

Table 2 Characteristics of Thalassiosira sp. growth

Medium

ES AF1 AF2 AF3

Specific growth rate (day−1) 0.46 ± 0.03 0.51 ± 0.01 0.57 ± 0.04 0.43 ± 0.01
Max. cell density (×106 cell mL−1) 5.60 ± 0.38 4.32 ± 0.13 5.49 ± 0.10 7.68 ± 0.26
Doubling time (day) 1.50 ± 0.10 1.35 ± 0.02 1.22 ± 0.09 1.60 ± 0.02
Cost per L (IDR) 547 10 117 117

Data are mean ± standard deviation of triplicates
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cell division, and the amount of biomass increased. During the exponential phase until the 7th
day, Thalassiosira sp. cells also produced oils containing phospholipids, glycolipids, and free
fatty acids used for the formation of the cell membrane during cell division. Figure 3 shows the
morphology of the Thalassiosira sp. cells observed during the growth phase until the 7th day,
in which the spores are not yet observed. Resting spores (small spherical bodies lying inside
diatom cells) of the Thalassiosira sp. cells appeared on the 8th day, when the cell division rate
declined. Resting spore formation has been commonly observed in centric diatoms including
Thalassiosira sp. but rarely in pennate marine planktonic diatoms [35]. Resting spores have
also been found to occur when diatoms were grown in stressful environments such as areas
with depleted nutrients, high light intensity, and temperature changes [36, 37]. The formation
of resting spores indicated that the metabolism of the cells had changed from membrane lipid
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Fig. 3 Accumulation of intracellular neutral lipids in Thalassiosira sp. cells. Thalassiosira sp. cells without
resting spores were observed during 7 days of growth, while cells with resting spores were observed after 8 days
of growth
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synthesis to the lipogenic phase to accumulate neutral lipids (oils) as stored energy [38, 39] and
as a food reserve [40, 41]. Hence, the resting spores that appeared in the Thalassiosira sp. cells
were an indicator of the best time to harvest the algal biomass for oil.

Diatoms accumulate lipids when cell division ceases. To enhance oil accumulation in the
cells, we evaluated the growth of Thalassiosira sp. cells cultured in urea-ES medium with and
without additional trace minerals (Fig. 2). Thalassiosira sp. cells grown in urea-ES medium
showed no significant difference in biomass productivity compared with those in urea-TM-ES
medium (P < 0.05). The biomass productivity of Thalassiosira sp. harvested on the 13th day
was 20 mg L−1 day−1. However, oil content extracted from the dried-weight Thalassiosira sp.
cells cultured in both media was significantly different. The yield of oil obtained from
Thalassiosira sp. cells culture in the urea-ES medium was 28.25% (w/w), while the yield
from the cells cultured in the urea-TM-ES medium was 37.98% (w/w). These results indicated
that additional trace minerals within the algal development medium enhanced oil content. Oil
accumulation is controlled by the availability of ATP and NADPH in the cell during fatty acid
(FA) synthesis, especially during the elongation and desaturation processes [42]. Chemical
energy (ATP and NADPH) is generated from light-driven photosynthesis involving the light
harvesting complex, the light sensitive complex (photosystem), electron transport proteins, and
ferredoxin, all of which require cofactors such as Fe, Mn, Co, Zn, and Cu [37]. The
composition of total FA produced by the cultured Thalassiosira sp. cells is shown in Table 3.
Thalassiosira sp. produced SFA dominated by myristic acid and palmitic acid, MUFA
dominated by palmitoleic acid, and PUFA dominated by eicosapentaenoic acids (EPA).
Interestingly, Thalassiosira sp. cells generated more MUFA and PUFA than SFAwhen grown
in the medium containing additional trace minerals (urea-TM-ES and AF3 medium). Hence,
trace minerals play critical roles in generating cellular metabolic energy for lipid biosynthesis.

Lipid Production in Outdoor Conditions

To produce lipids of Thalassiosira sp. on a large scale, the algal cells were cultivated in outdoor
photobioreactors under direct sunlight. The cultures of Thalassiosira sp. were scaled up in
outdoor photobioreactors in two different seasons, rainy and dry (Fig. 4). Daily sunlight intensity
during the rainy season fluctuates greatly depending on the weather conditions, with maximum
daily sunlight intensity observed from 766 to 1570 μm photon m−2 s−1 (Fig. 4a). However, daily
sunlight intensity during the dry season was almost two times higher than that during the rainy
season, with the maximum daily sunlight intensity fluctuating from 1363 to 1817 μm photon
m−2 s−1 (Fig. 4b). In outdoor culture, the temperature of the medium relied on the intensity of the
incident sunlight. During the rainy season, the average daylight temperature of the culture
medium ranged from 21.1 to 31.1 °C, with maximum daily temperatures in the range of 26.7
to 34.3 °C (Fig. 4a). The maximum temperature was reached for 10 h (approximately from 6.00
a.m. to 4.00 p.m.) with the temperature increasing at an average rate of 1.1 °C h−1. In contrast, the
daily temperature during the dry season was 4 °C higher than that for the rainy season, and the
length of daylight was 30 min longer. The average daylight temperature ranged from 21.6 to
33.5 °C, with maximum daily temperatures ranging from 30.1 to 39.1 °C (Fig. 4b). The
maximum temperature was reached for 9 h (from approximately 5.00 a.m. to 2.00 p.m.) with
the temperature increasing at an average rate of 1.4 °C h−1. Thus, the weather conditions in the
tropics were crucial for the acclimatization and adaptation of the Thalassiosira sp. cells outdoors.

Thalassiosira sp. cells cultured in both seasonal experiments showed similar growth profile
features: they needed to adapt to new environments when transferred from indoor to outdoor
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conditions. The microalgae cultured outdoors were often exposed to a variety of changes
in environmental conditions, particularly sunlight intensity and temperature occurring in
circadian and seasonal cycles [43]. In the rainy season, Thalassiosira sp. cells needed
4 days to adapt to the outdoor conditions and then grew rapidly, with a specific growth
rate of 0.44 day−1(Fig.4a). Meanwhile, in the dry season, the adaptation time of
Thalassiosira sp. cells was 2 days longer, and the cells grew slowly at a specific growth
rate of 0.15 day−1(Fig. 4b). In the dry season, the growth of algal cells was strongly
inhibited by high sunlight irradiation and temperature. The excessive light intensity caused
photodamage to the chlorophyll of the algal cells but not the carotenoids [44], resulting in
decreased oil productivity. Most mesophilic microalgae have been found to grow at
optimal temperatures ranging from 18 to 30 °C [45], but temperatures above 35 °C were
found to be lethal [46, 47]. The tropical marine diatom Thalassiosira sp. cultured in
outdoor photobioreactors was able to survive at 35–39 °C for 5 h daily, thus, indicating
the thermotolerance of the strain.

Table 3 Fatty acid composition of Thalassiosira sp. cells cultured in different types of media

Types of fatty acids Types of medium

Urea-ES Nitrate-ES Urea-TM-ES AF3

Saturated (SFA)
C8:0 (caprylic acid) 0.26 ± 0.19 – – –
C12:0 (lauric acid) – – 0.13 ± 0.05 1.43 ± 0.21
C13:0 (tridecanoic acid) – – – 0.99 ± 0.42
C14:0 (myristic acid) 19.26 ± 0.63 13.10 ± 0.20 12.72 ± 0.85 13.95 ± 0.61
C15:0 (pentadecanoic acid) 0.71 ± 0.25 0.46 ± 0.04 0.64 ± 0.31 0.87 ± 0.56
C16:0 (palmitic acid) 34.76 ± 1.27 35.28 ± 0.23 28.98 ± 0.91 19.37 ± 0.02
C17:0 (heptadecanoic acid) 0.51 ± 0.15 0.29 ± 0.01 1.77 ± 0.08 0.72 ± 0.74
C18:0 (stearic acid) 1.68 ± 0.51 0.76 ± 0.01 1.30 ± 0.18 3.94 ± 0.14
C20:0 (arachidic acid) – – – 0.66 ± 0.62
C22:0 (behenic acid) 0.66 ± 0.06 0.25 ± 0.01 – 1.78 ± 1.43
C23:0 (tricosanoic acid) – – – 0.12 ± 0.07
C24:0 (lignoseric acid) 1.32 ± 0.94 0.45 ± 0.06 0.61 ± 0.02 0.74 ± 0.20

Total SFA 59.2 50.6 46.2 43.9
Monounsaturated (MUFA)
C14:1 (myristoleic acid) – – – 2.25 ± 0.18
C15:1 (pentadecenoic acid) – – 0.22 ± 0.03 0.51 ± 0.06
C16:1 (palmitoleic acid) 32.86 ± 2.07 39.62 ± 1.25 39.3 ± 1.76 33.46 ± 1.71
C17:1 (heptadecenoic acid) – – – 0.54 ± 0.30
C18:1n9c (oleic acid) 1.72 ± 0.29 0.87 ± 0.04 1.69 ± 0.04 1.47 ± 0.13
C18:1n9t (elaidic acid) 1.38 ± 0.56 0.60 ± 0.05 1.46 ± 0.59 2.50 ± 0.03
C20:1 (cis-11-eicosenoic acid) – – – 0.80 ± 0.97

Total MUFA 36.0 41.1 42.8 41.5
Polyunsaturated (PUFA)
C16:3n3 (hexadecatrienoic acid) 1.26 ± 0.16 1.17 ± 0.04 1.84 ± 0.40 2.95 ± 1.42
C18:2n6c (Linoleic acid) 0.28 ± 0.03 0.48 ± 0.01 0.33 ± 0.13 1.27 ± 0.52
C18:2n6t (Linolelaidic acid) – 0.20 ± 0.00 0.41 ± 0.02 0.44 ± 0.14
C18:3n3 (α-linolenic acid) 0.63 ± 0.45 0.13 ± 0.00 0.15 ± 0.01 0.50 ± 0.12
C18:3n6 (γ-linolenic acid) – 0.51 ± 0.05 0.59 ± 0.05 0.78 ± 0.27
C20:4n6 (arachidonic acid, AA) 0.36 ± 0.18 0.57 ± 0.09 0.33 ± 0.19 0.71 ± 0.08
C20:5n3 (eicosapentaenoic acid, EPA) 2.31 ± 1.31 4.73 ± 0.75 3.71 ± 0.10 6.32 ± 0.32
C22:2 cis (docosadienoic acid) – – 3.41 ± 1.97 0.27 ± 0.32
C22:6n3 (docosahexaenoic acid, DHA) 0.30 ± 0.20 0.53 ± 0.01 0.34 ± 0.05 0.65 ± 0.26

Total PUFA 5.1 8.3 11.1 13.9
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Thermotolerant microalgae represent a candidate strain to be cultured outdoors for oil
production in the tropics [33]. Table 4 shows the biomass and oil productivity of Thalassiosira
sp. cultivated outdoors. The average biomass productivity of Thalassiosira sp. during the dry
season was 19.8 and 27.8 mg L−1 day−1 during the rainy season. The average percent yield of
oil produced by Thalassiosira sp. during the dry and rainy seasons was 12.0 and 23.3%,
respectively. For comparison, the percent oil yield produced by Fistulifera sp. in outdoor
photobioreactors was 13.0–37.7% [17], Chlorella zofingiensis 26.2–58.5% [48], and Chlorella
sp. 22.8–34.5% [49]. Similar to indoor cultures, Thalassiosira sp. cells cultivated in outdoor
photobioreactors during the rainy season produced a similar total FA composition dominated
by myristic acid, palmitic acid, palmitoleic acid, and EPA (Supplementary Table S2). During
the dry season, the total FA composition of Thalassiosira sp. was also dominated by myristic
acid, palmitic acid, and palmitoleic acid, but the PUFAwas dominated by eicosatrienoic acid.
In general, Thalassiosira sp. produced more unsaturated fatty acids during the rainy season,
while they produced more saturated fatty acids during the dry season. The average areal oil
productivity of Thalassiosira sp. produced during the dry and rainy seasons was 8.1 and
23.9 t ha−1 year−1, respectively. The oil productivity of Thalassiosira sp. was comparable to a
palm oil productivity of 5.4 t ha−1 year−1 [2]. This result implies that Thalassiosira sp. is a
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Fig. 4 Growth profile of Thalassiosira sp. in outdoor conditions during the rainy season (a) and the dry season (b)
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promising tropical microalgal oil feedstock. Currently, Indonesia is the highest palm oil-
producing country in the world. As a maritime country, Indonesia may also mass produce algal
oil above the surface of the sea. In the future, algal oil together with palm oil will hopefully
become renewable energy sources to replace fossil fuel, at least to fulfil our domestic demand.

Conclusion

The present study demonstrated that Thalassiosira sp. cells grew well in AF3 medium
containing soluble nitrate, phosphate, silicate, and trace minerals. They produced high oil
productivity. The AF3 medium, which was easily obtainable and inexpensive, was the best
choice medium for generating large-scale Thalassiosira sp. biomass. The Thalassiosira sp.-
produced SFAwere dominated by myristic acid and palmitic acid, the MUFAwere dominated
by palmitoleic acid, and the PUFA were dominated by EPA. The areal oil productivity of
Thalassiosira sp. outdoor in the tropics ranged from 8.1 to 23.9 t ha−1 year−1. Further efforts
on developing a pilot model to produce algal oil above the surface of the sea are worthwhile.
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