ROLE OF THE SUBSTRATE IN REGENERATION

- relationship between the regenerating cells and their substrate is critical for:
 - maintenance of normal tissue functions and
 - the migrations or changes in state that are part of healing and regenerative processes
- cell adhesion molecules: membrane-bound glycoprotein molecules that mediate attachments between cells and other cells or components of the ECM

ECM function

- *Mechanical support* for cell anchorage and cell migration, and maintenance of cell polarity
- *Control of cell growth.* ECM components can regulate cell proliferation by signaling through cellular receptors of the integrin family.
- Maintenance of cell differentiation. The type of ECM proteins can affect the degree of differentiation of the cells in the tissue, also acting largely via cell surface integrins.

ECM function

- Scaffolding for tissue renewal. The maintenance of normal tissue structure requires a basement membrane or stromal scaffold. The integrity of the basement membrane or the stroma of the parenchymal cells is critical for the organized regeneration of tissues.
- Establishment of tissue microenvironments. Basement membrane acts as a boundary between epithelium and underlying connective tissue and also forms part of the filtration apparatus in the kidney.
- Storage and presentation of regulatory molecules..

FIGURE 3-2 Role of the extracellular matrix in regeneration and repair. Liver regeneration with restoration of normal tissue after injury requires an intact cellular matrix. If the matrix is damaged the injury is repaired by fibrous tissue deposition and scar formation.

- The ECM is composed of three groups of macromolecules:
 - *fibrous structural proteins*, such as collagens and elastins that provide tensile strength and recoil;
 - adhesive glycoproteins that connect the matrix elements to one another and to cells; and
 - proteoglycans and hyaluronan that provide resilience and lubrication.
- Two basic forms of ECM:
 - interstitial matrix
 - is found in spaces between epithelial, endothelial, and smooth muscle cells, as well as in connective tissue.
 - It consists mostly of fibrillar and nonfibrillar collagen, elastin, fibronectin, proteoglycans, and hyaluronan.
 - basement membranes.
 - closely associated with cell surfaces,
 - consist of nonfibrillar collagen (mostly type IV), laminin, heparin sulfate, and proteoglycans.

Kolagen

- merupakan glikoprotein
- disintesis terutama oleh fibroblast, sel otot polos dan sel epitel
- struktur kolagen memiliki kesamaan pada :
 - semua molekul kolagen memiliki trimer yang terdiri dari rantai polipeptida → rantai a
 - 3 rantai polipeptida kolagen berikatan membentuk struktur yang unik - rodlike triple helix

ECM

collagen

Table 2.1 Classification and types of collagens based on the collagen chain encoding genes, their distribution in tissues and disorders caused by their mutations

	T	Own	C	E	Classic	Distribution in the	Disorders caused by mutation	
Classification	Туре	chains	Gene	Exons	Chromosome"	Distribution in tissues	in genes	
Fibrillar collagens	I	α1	COL1A1	51	17q21.3–q22	Bone, tendon, ligament,	Osteogenesis imperfecta, osteoporosis	
		α2	COLIA2	52	7q22.1	skin		
	п	α1	COL2A1	54	12q13.11	Cartilage, intervertebral	Several chondrodysplasias,	
			Col2a1	54		disc, vitreous humor	osteoarthritis	
	III	α1	COL3A1	51	2q24.3-q31	Co-expressed with collagen I	Ehlers-Danlos syndrome (type IV),	
			Col3a1	51	1	in vasculature and skin	arterial aneurysms	
	V	α1	COL5A1	66	9q34.2-q34.3	Co-expressed with collagen I	Ehlers-Danlos syndrome (types I	
		α2	COL5A2	54	2q14-q32	in lung, cornea and bone	and II)	
		α3	COL5A3	66	19p13.2			
	XI	α1	COL11A1	68	1p21	Co-expressed with collagen II	Chondrodispasias, non-systematic heating loss, osteoarthritis	
		α2	COL11A2	66	6p21.2			
		α1(II)						
	XXIV	α1	COL24A1	57	1p22.3	Co-expressed with collagen I in bone and cornea	Not known	
	XXVII	α1	COL27A1	61	9q32	Co-expressed with collagen II in cartilage and epithelia	Not known	
	XXVIII	α1	COL28A1	32	7p21.3	Peripheral nerves	Not known	
3D network	IV	α1	COL4A1	52	13q34	Most basement membranes	Alport syndrome	
(BM-collagens)		α2	COL4A2	47	13q34	Glomerular and alveolar BM	(COL4A3, COL4A4, COL4A5)	
			Col4a2	47	8		Alport syndrome with diffuse	
		α3,	COL4A3	52	2q34-q37		oesophageal leiomyomatosis (COL4A5, COL4A6)	
		α4	COL4A4	48	2q35-q37			
		α.5	COL4A5	51	Xq22		Lethality at 14 weeks, progressive	
		α6	COL4A6	46	Xq22		glomerulonephritis, renal failure ^b	

		Own					Disorders caused by mutation
Classification	Туре	chains	Gene	Exons	Chromosome ^a	Distribution in tissues	in genes
Microfibril (Beaded-	VI	α1	COL6A1	36	21q22.3	Wide tissue distribution, not bone	Bethlem myopathy
filaments)		α2	COL6A2	36	21q22.3		
		α.3	COL6A3	41	2q37		
Anchoring fibril	VII	α1	COL7A1	118	3p21	Squamous epithelium BM zone	Epidermolysis bullosa
			Col7a1	118	9		
Hexagonal lattice	VIII	α1	COL8A1	5	3q12.3	Many tissues, descement's	Corneal endothelial dystrophy
		α2	COL8A2	2	1p34.2	membrane of cornea	
	Х	α1	COL10A1	3	6q21-q22	Hypertrophic cartilage	Schmid metaphyseal chondrodisplasi
			Col10a1	3	10		
FACITs	IX	α1	COL9A1	38	6q12-q14	Associated with type II fibrils in cartilage and cornea	Epiphyseal dysplasia, intervertebral disc disease, osteoarthrosis
		α2	COL9A2	32	1p32		
			Col9a2	32	4		
		α.3	COL9A3	32	20q13.3		
	XII	α1	COL12A1	65	6q12-q13	Associated with type I fibrils in perichondrium, ligament, and tendon	Disruption of periodontal and skin matrix structure ^b
	XIV	α1	COL14A1	44	8q23	Associated with type I fibrils in many tissues	Not known
	XVI	α1	COL16A1	67	1p35-p34	Associated with type II fibrils in hyaline cartilage and with microfibrils in skin	Not known
	XX	α1	COL20A1	35	20q13.33	Associated with type I fibrils in sternal cartilage, cornea, and tendon	Not known
	XXI	α1	COL21A1	28	6p12.3-p11.2	Associated with type I fibrils in vessel walls	Not known

FACIT-like	XIX	α1	COL19A1	51	6q12–q14	Rare BM zones, in developing muscle	Abnormal muscle layer in the oesophagus ^b
	XXII	α1	COL22A1	63	8q24.23	Associated with microfibrils at tissue junctions	Not known
	XXVI	α1	EMID2	13	7q22.1	Testis and ovary	Not known
Trans-membrane collagens	XIII	α1	COL13A1 Col13a1	41/42 42	10q22 10	Many tissues at a low level	Fetal lethal, cardiovascular and placental defects, tumor formation ^b
							Progressive muscular atrophy ^b
	XVII	α1	COL17A1	56	10q24.3	Skin and intestinal epithelia	Epidermolysis bullosa
	XXIII	α1	COL23A1	20	5q35.3	Heart, lung and brain, metastatic tumor cells	Not known
	XXV	α1	COL25A1	35	4q25	Neurons	Not known
Multiplexins	XV	α1	COL15A1 Col15a1	42 40	9q21–q22 4	Many BM zones	Mild myopathy, cardiovascular defects ^b
	XVIII	α1	COL18A1	43	21q22.3	Endothelial and epithelial BM	Knobloch syndrome
			Col18a1	43	10	zones	Vascular abnormalities in the eyeb

^aThe cromosomal locations and the exones were collected from the Entrez Gene data base ^bIn transgenic mouse models; BM – basement membrane; Modified from Jäälinoja et al. 2007, Cosgrove et al. 1996, Reichenberger et al. 2000, Myllyharju et al. 2001, Fukai et al. 2002, Sund et al. 2001, Kvist et al. 2001 and Eklund et al. 2001.

ECM: Non collagen

- Terdiri dari 3 rantai polipeptida yang berikatan melalui rantai disulfida
- Berperan dalam migrasi sel, diferensiasi, pertumbuhan
- Berperan dalam migrasi PGC
- ECM lain : tenascin, entactin, trombospondin

11

Laminin

 Table 2.2
 Classification laminins, their abbreviations according to current nomenclature with some alternative names and the genes encoding them

Laminin (LM)	Abbreviation and alternative names	Genes encoding the laminin chains
LM-α1β1γ1	LM-111, Ln-1	LAMA1, LAMB1, LMAC1
LM-α2β1γ1	LM-211, Ln-2	LAMA2, LAMB1, LAMC1
LM-α1β2γ1	LM-121, Ln-3	LAMA1, LAMB2, LAMC1
LM-α2β2γ1	LM-221, Ln-4	LAMA2, LAMB2, LAMC1
LM-α3Αβ3γ2	LM-332/LM-3A32, Ln-5/5A	LAMA3A, LAMB3, LAMC2
LM-α3Ββ3γ2	LM-3B32, Ln-5B	LAMA3B, LAMB3, LAMC2
LM-α3Αβ1γ1	LM-311/LM-3A11, Ln-6	LAMA3A, LAMB1, LAMC1
LM-α3Αβ2γ1	LM-321/LM-3A21, Ln-7	LAMA3A, LAMB2, LAMC1
LM-α4β1γ1	LM-411, Ln-8	LAMA4, LAMB1, LAMC1
LM-α4β2γ1	LM-421, Ln-9	LAMA4, LAMB2, LAMC1
LM-α5β1γ1	LM-511, Ln-10	LAMA5, LAMB1, LAMC1
LM-α5β2γ1	LM-521, Ln-11	LAMA5, LAMB2, LAMC1
LM-α2β1γ3	LM-213, Ln-12	LAMA2, LAMB1, LAMC3
LM-α3β2γ3	LM-323, Ln-13	LAMA3, LAMB2, LAMC3
LM-α4β2γ3	LM-423, Ln-14	LAMA4, LAMB2, LAMC3
LM-α5β2γ3	LM-523, Ln-15	LAMA5,LAMB2, LAMC3
$LM-\alpha 5\beta 2\gamma 2$	LM-522	LAMA5, LAMB2, LAMC2

Modified from Patarroyo et al. 2002, Aumailley et al. 2005, Tzu et al. 2008 and Egles et al. 2007.

Proteoglikan

- Kompleks protein polisakarida
- Terdiri atas :
 - core protein berikatan dengan rantai glikosaminoglikans (GAG) →

- mengikat banyak molekul air
- membentuk gel yang porous

- Mengelilingi sel otot dan sel lemak
- Di bawah jaringan epitel, sel-sel endotelium
- tempat pelekatan sel;
- substrat untuk migrasi sel;
- membatasi jaringan dalam suatu organ,
- sebagai suatu barier makromolekul. BM mencegah lalunya protein dari darah → pada dinding kapiler Dalam ginjal double layer yang memisahkan kapiler pada glomerulus dari dinding tubulus ginjal.
- sebagai barier untuk invasi sel ke suatu jaringan

Cell-ECM interaction

FIGURE 1.1

Epithelial versus mesenchymal. Epithelial cells adhere tightly together by tight junctions and adherens junctions localized near the apical surface. Epithelial cells also have a basal surface that rests on a basal lamina. Mesenchymal cells in contrast do not have well-defined cell-cell adhesion complexes, have front-end/back-end polarity instead of apical/ basal polarity, and are characterized by their ability to invade the basal lamina. • EMT pathway

Components of invasion

- a) Matrix degrading enzymes
- b) Cell adhesion
- c) Cell motility

Matrix degrading enzymes

- Required for a controlled degradation of components of the extracellular matrix (ECM)
- The proteases involved in this process are classified into serine-, cysteine-, aspartyl-, and metalloproteinase.

Classification	MMP	names	Mw ^a	Collagen substrates	Non-collagenous substrates	Other substrates
Archetypal MMPs						
Collagenase	1	Collagenase-1	52/41	I, II, III, VII, VIII, X, XI, gelatin	Dntactin, fibronectin, laminin, perlecan, proteoglycans, tenascin, vitronectin	α ₁ -antiprotease, α1PI, α2M, casein, C1q, fibrinogen, IL-1α and -β, proMMP-1, -2, pro- TNF-α, SDF-1
	8	Collagenase-2	75/58;54/42	I, II, III, V, VII, VIII, X, gelatin	Entactin, fibronectin, laminin, proteoglycans, tenascin	ADAMTS-1, α2M, α1PI, fibrinogen, Ln-5, proMMP-8, substance P, tissue factor pathway inhibitor
	13	Collagenase-3	60/48	I, II, III, IV,V, VII, IX, X, XIV, XVII, gelatin	Fibronectin, laminin, proteoglycans, tenascin	C1q, fibrinogen, MCP-3, proMMP-9, -13, SDF-1
Stromelysin	3	Stromelysin-1	54/43, 28	IIII, IV, V, VII, IX, X, XI, gelatin	Decorin, elastin, fibronectin, laminin, proteoglycans, tenascin, vitronectin	α1PI, α2M, E-cadherin, casein, fibrin, fibrinogen, L-selectin, proHB-EGF, proMMPs, proTNF-α
	10	Stromelysin-2	54/43, 24	I, III, IV, V, IX, X, XI, gelatin	Aggrecan, elastin, fibronectin, integrin, laminin, vitronectin	α1PI, α2M, casein, fibrin/fibrinogen, proαdefensin, proMMPs, proTNF-α

Table 2.6 Classification of matrix metalloproteinases (MMPs) based on their domain arrangement and their alternative names, molecular weights and their collagenous, non-collagenous and other substrates

¹⁹

MMP family

Matrix metalloproteinases (MMP)

- 16 members, subdivided into 4 groups, based on their structural characteristics and substrate specificities
- Soluble and secreted groups; collagenase, gelatinase and stromelysins
- Membrane type (MT-MMP) group are anchored in the plasma membrane
- A zinc ion in the active centre of the protease is required for their catalytic activities.

Regulation of MMP

- MMP is controlled by an increased expression on a transcriptional level.
- MMPs are calcium-dependent proteases, which are synthesized as a inactive proenzymes and are activated by the cleavage of a propeptide.
- MMP activity is regulated by specific inhibitors, the tissue inhibitors of MMP (TIMPs). Binding TIMP to MMP is in a 1:1 stoichiometry.
- MMP2 and MMP9, which cleave type IV collagen the major constituent of basement membrane, are believed to be of special importance

23

Serine proteases

- Serine protease involved in ECM degradation are plasmin, plasminogen activators and cathepsin G.
- Plasmin is believed to be the most important serine protease, firstly because its ability to degrade several matrix components like gelatin, fibronectin or laminin, and secondly by the possible activation of numerous proforms of MMPs by propeptide cleavage.
- Plasmin is synthesized in its inactive proform, plasminogen, which can be converted to plasmin by plasminogen activator.

Plasminogen activator

- Two main types : urokinase (uPA) and tissue (tPA).
- There are specific inhibitors (PAI-1 and PAI-2) for the PA.

Examples of Growth Factors and Cytokines That Are Bound to Components of the Extracellular Matrix

Bound to heparin/heparan sulfate proteoglycans	Bound to chondroitin sulfate chains Platelet factor 4
FGF-1 to FGF-9	
GM-CSF	Bound to matrix proteins
HB-EGF	Collagen type IV: TGF-β, BMP-2, BMP-7
HGF/SF	Decorin: TGF-β
IL-2, -3, -4, -6, -8	Fibrin: TGF-B
IP-10	Fibronectin: TGF-β, TNF-α
KGF	IGF-binding proteins: IGF-1
MCP-1	Proteoglycan core proteins: TGF-β
MK	SPARC: PDGF-AB, PDGF-BB
NT-6	Thrombospondin: TGF-β
PDGF-A, -B	160-kDa protein: LIF
Platelet factor-4	-
Purpurin	
Schwann cell growth factor	
TGF-β	
VEGF	

Cell attachment

1. Integrin: cell-matrix adhesion

2. E-cadherin/catenin adhesion complex: cellcell adhesion

Class	Interaction type	Ca ⁺⁺ or Mg ⁺⁺ involvement	Ligand
Cell adhesion molecules (CAMs)	Homophilic/ heterophilic	No	Other CAMs
Cadherins	Homophilic	Yes	Identical cadherins
Selectins	Heterophilic	Yes	Sialyl structures, in blood vessels only
Integrins	Heterophilic	No	Various: collagen, fibronectin, vitronectin, laminin, thrombospondin, complement, fibrinogen, von Willebrand factor

Classes of Cell-Surface Adhesion Molecules

Integrin

- Heterodimeric transmembrane receptors consists of α and β subunits
- Function to provide interactions between cells and macromolecules in the ECM
- Integrin can affect the transcription of MMP genes

2/28/2014

Integrin signaling

2) E-cadherin and catenin complex

• Most important cell-cell adhesion molecules

Cadherin-mediated cell-cell adhesion

31

c) Cell migration

- 1. Small Rho GTPase family
- 2. Motility promoting factors

Model of Rho GTPase regulation

37

Regulation of Rho GTPase

trends in Cell Biology

Rho GTPase is required for the transition of invasive phenotype

Signaling pathways related to integrin and small GTPase

E-cadherin and Rho GTPase signaling

