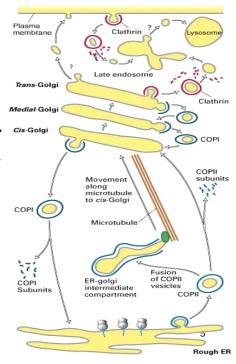


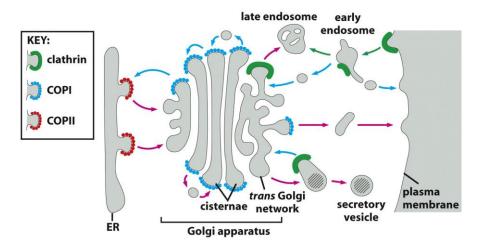
- THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENT DIVERSITY
- TRANSPORT FROM THE ER THROUGH THE GOLGI APPARATUS
- TRANSPORT FROM THE TRANS GOLGI NETWORK TO LYSOSOMES
- TRANSPORT INTO THE CELL FROM THE PLASMA MEMBRANE: ENDOCYTOSIS
- TRANSPORT FROM THE TRANS GOLGI NETWORK TO THE CELL EXTERIOR: EXOCYTOSIS

3


Molecular mechanisms of membrane transport and the maintenance of compartment diversity

Vesicles traffic: budding formation and membrane fusion

- Transport vesicles → coated vesicles
- Coated vesicles →
 - Select appropriate molecules for transport
 - Shapes the vesicles → relatively uniform size and shape
- Three types of well characterized coated vesicles, distinguished by their coat proteins:
 - CLATHRIN-coated
 - COP I-coated
 - COP II-coated
- Other coated vesicles i.e. retromer


Signal Sequence*	Proteins with Signal	Signal Receptor	Vesicles That Incorporate Signal-Bearing Protein
LUMINAL SORTING SIGNA	LS		
Lys-Asp-Glu-Leu (KDEL)	ER-resident soluble proteins	KDEL receptor in cis-Golgi membrane	СОРІ
Mannose 6-phosphate (M6P)	Soluble lysosomal enzymes after processing in cis-Golgi	M6P receptor in trans-Golgi membrane	Clathrin/AP1
	Secreted lysosomal enzymes	M6P receptor in plasma membrane	Clathrin/AP2
CYTOPLASMIC SORTING S	IGNALS		
Lys-Lys-X-X (KKXX)	ER-resident membrane proteins	COPI α and β subunits	СОРІ
Di-arginine (X-Arg-Arg-X)	ER-resident membrane proteins	COPI α and β subunits	COPI
Di-acidic (e.g., Asp-X-Glu)	Cargo membrane proteins in ER	COPII Sec24 subunit	COPII
Asn-Pro-X-Tyr (NPXY)	LDL receptor in plasma membrane	AP2 complex	Clathrin/AP2
Tyr-X-X-Φ (YXXΦ)	Membrane proteins in trans-Golgi	AP1 (μ1 subunit)	Clathrin/AP1
	Plasma membrane proteins	AP2 (μ2 subunit)	Clathrin/AP2
Leu-Leu (LL)	Plasma membrane proteins	AP2 complexes	Clathrin/AP2

 $^{^{*}}X$ = any amino acid; Φ = hydrophobic amino acid. Single-letter amino acid abbreviations are in parentheses.

Vesicle Type	Transport Step Mediated	Coat Proteins	Associated GTPase
COPII	ER to <i>cis-</i> Golgi	Sec23/Sec24 and Sec13/Sec31 complexes, Sec16	Sar1
COPI	<i>cis</i> -Golgi to ER Later to earlier Golgi cisternae	Coatomers containing seven different COP subunits	ARF
Clathrin and adapter proteins*	trans-Golgi to endosome	Clathrin + AP1 complexes	ARF
	trans-Golgi to endosome	Clathrin + GGA	ARF
	Plasma membrane to endosome	Clathrin + AP2 complexes	ARF
	Golgi to lysosome, melanosome, or platelet vesicles	AP3 complexes	ARF

^{*}Each type of AP complex consists of four different subunits. It is not known whether the coat of AP3 vesicles contains clathrin.

7

- · CLATHRIN-coated vesicles
 - · Mediate transport from Golgi and from plasma membrane
- COP-I and COP-II coated vesicles
 - Mediate transport from ER and from Golgi

8

Assembly of a clathrin coat → drives vesicle formation
 Component of clathrin coat:

 Clathrin
 Adaptor protein → bind to cargo receptor

VESICLE FORMATION

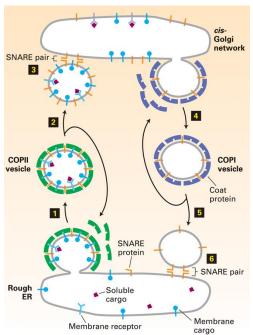
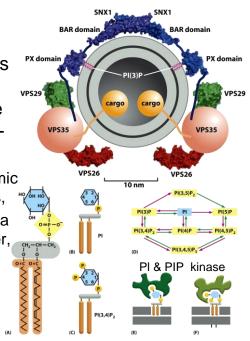

UNCOATING

Figure 14.11 Vescle-mediated protein trafficking between the ER and cis-Golgi.

cargo molecules

BUD FORMATION

COAT ASSEMBLY
AND CARGO SELECTION


 Other coated vesicles i.e. retromer

assembles on endosomes
 → Golgi apparatus i.e.
 containing acid hydrolase
 receptors i.e. mannose-6 phosphate receptor,

 it can bind to the cytoplasmic tails of the cargo receptors,

 it can interact directly with a curved phospholipid bilayer, and

 it can bind to a specific phosphorylated phosphatidylinositol lipid

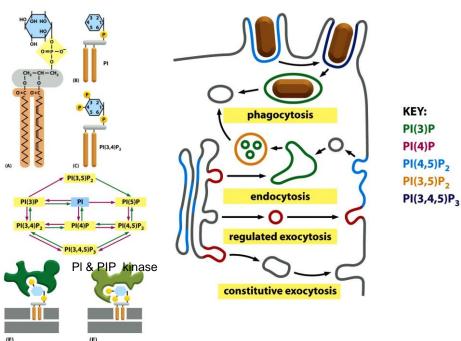
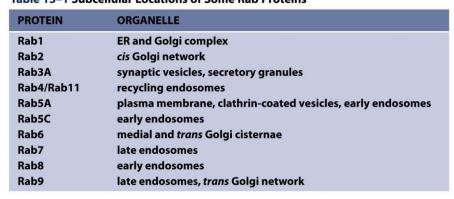
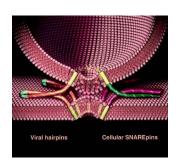
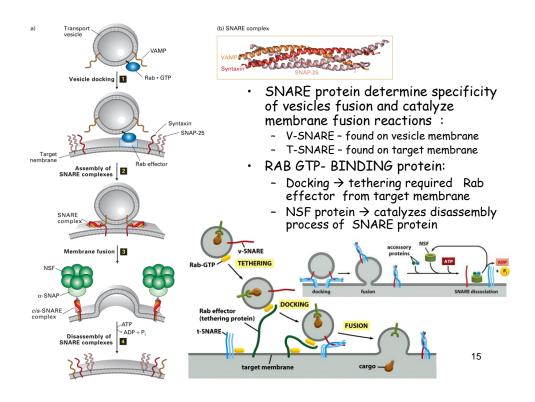


Figure 13-10a, b, c iniorecular biology of the cell (© Garland Science 2008)


Integral proteins excluded from transport vesicles Exoplasmic face Cytosolic face Assembly particle Reseptor Cargo Adaptin Continuous Collaboration Continuous Collaborati


Monomeric GTPase control coat assembly


Vesicle targeting and specificity

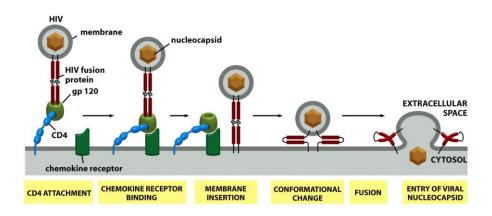
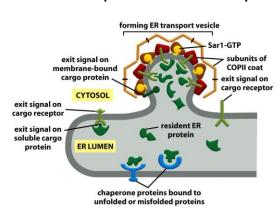

- Selectifity and specificity of vesicle targeting →
 - 1. SNARE proteins and
 - 2. Rabs protein \rightarrow GTPase

Table 13-1 Subcellular Locations of Some Rab Proteins



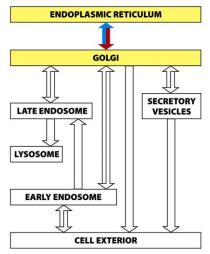
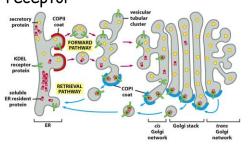
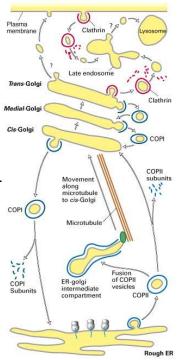
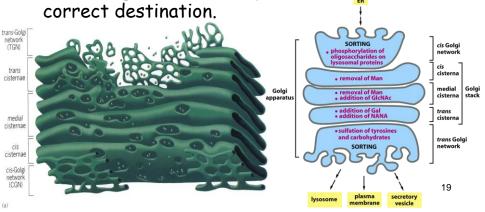

The entry of enveloped viruses into cells

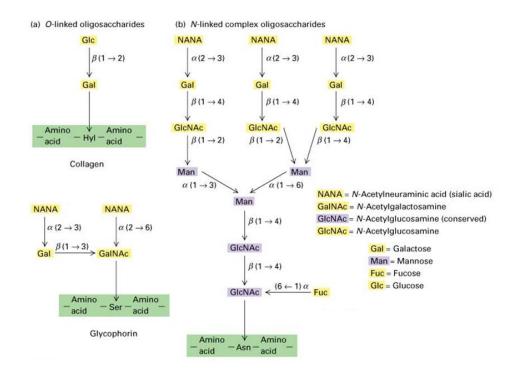
Figure 13-19b Molecular Biology of the Cell (© Garland Science 2008)


Transport from ER through Golgi

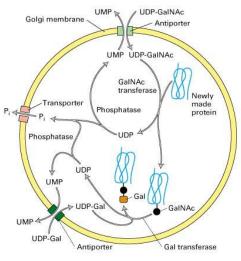

Transport mediated by COPII

- Only properly folded and assembled proteins can leave ER and transport to Golgi
- Vesicles from ER will be fused with Golgi
- Vesicles transportation→ mediated Medial-Golgi by microtubule
- Protein transport (in vesicles) to Golgi → followed by vesicles formation - transported back to ER-(retrogate) → mediated by KDEL receptor

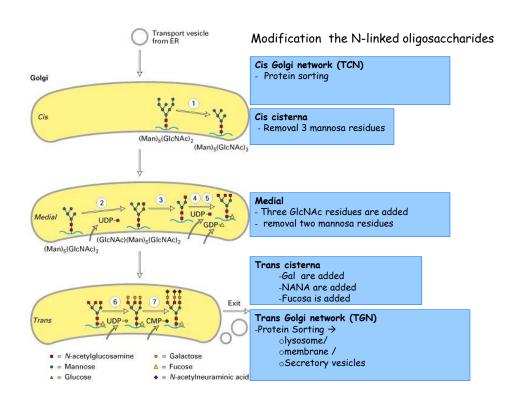


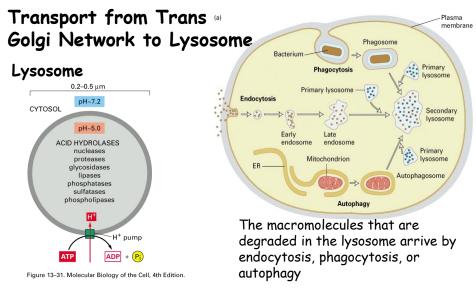


Golgi Apparatus

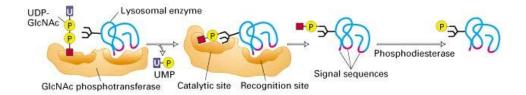

- · Glycosylation process of protein
 - Modifies the N-linked oligosaccharides and adds
 O-linked oligosaccharides.

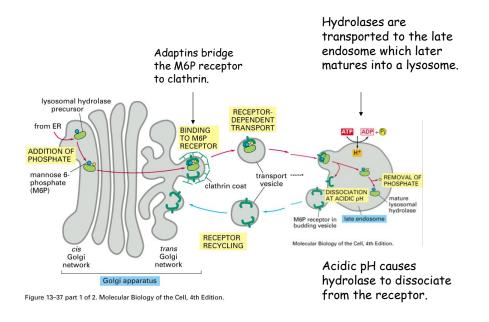
 Sorts proteins so that when they exit the trans Golgi network, they are delivered to the correct destination

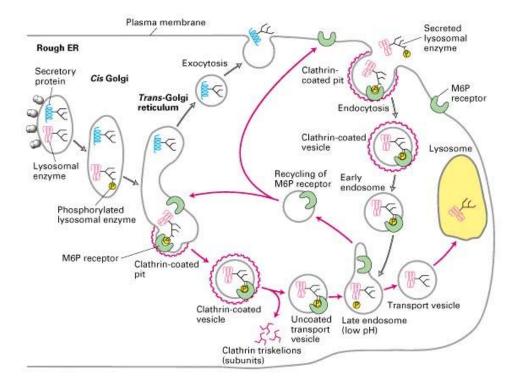




- Oligosaccharides transport for glycosylation in Golgi
- Glycosylation is mediated by nucleotide-linked sugars

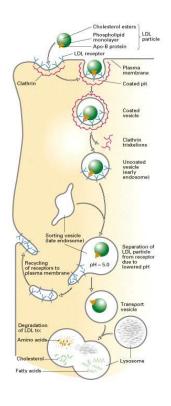

21

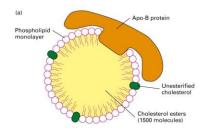




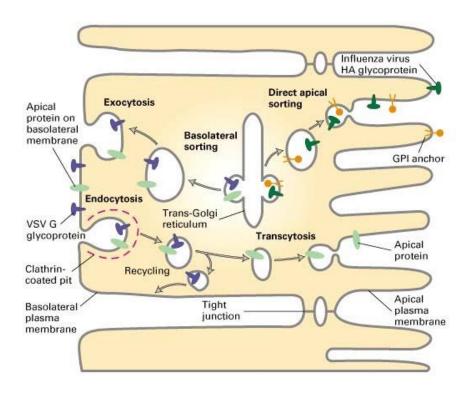
- pH ~ 5.0 → need H+-pump
- Plant cells and fungi → Vacuole → nutrition and waste storage

 The acid hydrolases in the lysosome are sorted in the TGN based on the chemical marker mannose 6-phosphate

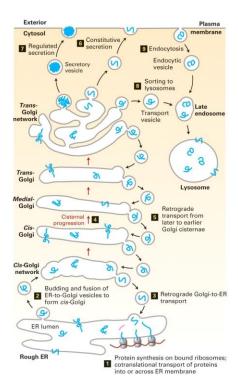




Endocytosis


- Macromolecules uptake
- Phagocytosis → particles
- Pinocytosis → soluble substances
- Two types of endocytosis:
 - 1. bulk-phase endocytosis: unspecific, continuous endocytocis
 - 2. receptor-mediated endocytosis: specific, depend on specific receptor on the cell membrane

27



Exocytosis

- · 2 secretory activity:
 - constitutive: regular secretory activity
 - Regulative : stimulation is needed for secretion

