

CYTOSKELETON AND CELL MOTILITY

Cytoskeleton is structural protein that builds up membrane system and cytoplasmic components

rigure 16-1
Molecular Cell Biology, Sixth Edition 2008 W. H. Freeman and Company

Some functions of actin filaments are:

- **- to provide mechanical strength to the cell by forming a band under the plasma membrane - link transmembrane proteins to cytoplasmic proteins**
- **form contractile ring during cytokinesis in animal cells**
- **cytoplasmic streaming**
- **- generate locomotion in cells such as white blood cells and amoeba**
- **- Interact with myosin to provide force of muscular contraction**

• **conserved internal organization of the cell**

Intermediate filaments provide mechanical strength and resistance to shear stress. There are several types of intermediate filaments, each constructed from one or more proteins characteristic of it.

Keratins are found in epithelial cells, hair and nails Nuclear lamins form a meshwork that stabilizes the inner nuclear membrane Neurofilaments strengthen the long axons of neurons Vimentins provide mechanical strength to muscle and other cells

- Cytoskeletal filaments are dynamic and adaptable
- Cytoskeleton can form stable structures

Extracellular matrix

Cytoskeletal polymer formation

critical concentration/Cc=

- The concentration of free subunits in solution.
- rate constant for subunit loss divided by the rate constant for subunit addition that is, $Cc = koff / kon$.

polymer dynamics: 3 cases

•**linear polymers**

• **polar polymers: asymmetric subunits undergo conformational change during assembly**

• **complex polymers: non-equilibrium subunit nucleotide hydrolysis (energy input) actin and microtubules**

linear Polymer

Assembles/disassembles by addition/loss of subunits at ends $Rates = K_{on}$ and K_{off}

Kon depends on concentration of subunit, units of M-1 sec-1 K_{off} does not (unimolecular), units of sec⁻¹

rate of

Time course of polymerization

- **1) lag due to kinetic barrier to nucleation**
- **2) growth**
- **3) equilibrium**

polymer grows, subunit concentration drops until $K_{on}[C] = K_{off}$ **, when** $[C]$ **= critical concentration Cc** $(M^{-1}sec^{-1}[M] = sec^{-1})$

Critical Concentration

• **Concentration of free subunits at which rate of subunit addition KonC= rate of loss (Koff)**

 \cdot Above Cc \rightarrow net growth, **below Cc** \rightarrow net shrinkage

• **Equilibrium constant Keq determined by change in free energy between free subunits and polymer**

> k_{on} C = k_{off} $C_c = \frac{k_{\text{off}}}{k_{\text{on}}} = \frac{1}{K}$

Polar Polymer

Two ends polymerize and depolymerize at different rates BECAUSE

subunit conformation changes as it incorporates into the polymer

Plus and minus ends:

• **Different Kon and Koff**

• **But!**

 K_{off}/K_{on} ratio or C_c must be the same for both ends:

>The same interactions are broken when a subunit dissociates from either end

>The final state of the subunit is identical

If the plus end grows 3 times faster it must also shrink 3 times faster. Above Cc both ends grow, below Cc, both shrink

Complex Polymer (non-equilibrium): microtubules, actin filaments

Due to nucleotide hydrolysis upon assembly of subunit into polymer:

Nucleotide hydrolysis reduces binding affinity

 Internal subunits have different dynamic properties than the ends

T form binds, D form dissociates K^T _{on} K^D _{off} K^D _{off} K^T _{off}

Cc = "steady state" concentration: $K^{\text{T}}_{\text{on}}[\text{C}]\text{=}\text{K}^{\text{D}}_{\text{off}}$
Cc=K $^{\text{D}}_{\text{off}}$ /K $^{\text{T}}_{\text{on}}$

Steady State Dynamics

No longer true equilibrium, rather steady state because ATP or GTP subunits must be replenished

Consequences for polymer dynamics

Treadmilling (actin and microtubules)

- **Two different reactions at each end of the polymer**
- **Critical concentration different** $Cc(-end) > Cc(+end)$

Treadmilling

Both ends exposed: Steady state occurs at concentration between Cc(- end) and Cc(+ end)

 net assembly at the plus end net disassembly at the minus end

subunits "flux" through the polymer

Treadmilling

Actin treadmilling.

Dynamic instability (microtubules):

• **frequency correlates with tubulin concentration**

Dynamic Instability

Figure 18.11 Dynamic instability depends on the presence or absence of a GTP--tubulin cap.

Actin Filaments

- The tip of the leading edge of a cell nucleates actin filaments.
- Actin filament nucleation most frequently occurs at the plasma membrane \rightarrow highest density of actin filament is at the cell cortex

Cytoplasmic streaming in cylindrical giant algae.

Figure 17.38 Cargo movement by myosin Vs in budding yeast.

http://bcs.whfreeman.com/lodish7e/#800911__816642__

Actin/Myosin Fibers: muscle contraction

(a) Myosin motors in muscle cell contraction copyright σ 2006 Pearson Flat parameter and Equation Equation Complete to a contraction

Motor proteins transition/cycle between different conformations: one step is driven by the hydrolysis of ATP, thereby making the cycle essentially irreversible and movement unidirectional

Figure 17.44 Summary of signal-induced changes in the actin cytoskeleton.

Some intracellular pathogens such as the bacteria *Listeria* and *Shigella* and the vaccinia virus usurp the host cell's mechanism of assembling actin networks and propel themselves through the cytoplasm with actin "tails". (a)

Stealing the machinery

- Listeria has on its surface the protein **ActA**
- **ActA** *recruits* **Arp2/3** from the cytoplasm and *activates* it (basically substituting for WASP)
- Promotes actin filament nucleation and growth

Biconcave Red Blood Cells the structural basis for the cortical cytoskeleton in erythrocytes-spectrin $\frac{1}{5 \mu m}$ Acti

Actin specific drugs

• **Phallotoxin (phalloidin)**

- an actin filament stabilizer
- the poison in some mushroom genera
- It kills by *stabilizing* actin filaments (inhibiting disassembly)
- Immediate cause of death is liver failure
- **Cytochalasin**
	- an actin filament de-stabilizer
	- also derived from mushrooms
- **Swinholide**
	- Severs filaments
- **Latrunculin**
	- Binds subunits and prevents their polymerization

Death Cup mushroom

MICROTUBULE

Structure and composition :

- Rod shape (tubule) exist almost in all eukaryote cells
- Function in mitosis and cell movement \rightarrow cilia dan flagella
- Consist of proto -filaments \rightarrow paralel along the axis of tubules.
- Protofilament consists of 2 kind of tubulin molecules : α dan β tubulin

Microtubule play a role in intracellular motility : material transport

terminal & **organelles transport**

dynein → cilia and flagella movement

Organization of MT around the MTOC and spindle poles

Microtubule-Organizing center (MTOC)

- **the place where enucleation of tubulin is happened**
	- **tubulin molecule start to organize and elongate**
	- **centrosome, basal body**
- **Centrosome**
	- **Only in animal cells**
	- **Consists of 2 centrioles & peri-centriolar material,** located near the nucleus
- **basal body**
	- **Microtubules from cilia and flagella start from basal body**
- **Polymerization in MTOC**
	- is started with the arrangement of γ-tubulin in the nucleation center and then polymerization will continue with the arrangement of $α$ and $β$ tubulin

Basal body $(-)$

 $\frac{1}{2}$

Nucleus Centriole MTOC

Flagellum or cilium

Figure 18.36 The stages of mitosis.

Breakdown of interphase
microtubule display and its
replacement by mitotic asters,
Mitotic aster separation,
Chromosome condensation,
Kinetochore assembly

Anaphase

APC/C activated and
cohesins degraded
Anaphase A: Chromosome
movement to poles
Anaphase B:
Spindle pole separation

Telophase

Nuclear envelope reassembly,
Assembly of contractile ring

Cytokinesis

Reformation of interphase microtubule array,
Contractile ring forms cleavage furrow

Mitotic spindles have three distinct classes of microtubules.

Figure 18.40 Chromosome capture and congression in prometaphase.

26

Figure 18.42 Chromosome movement and spindle pole separation in anaphase.

Cilia and Flagella

• Microtubules control the beating of cilia and flagella, locomotor appendages of some cells

Cilia and Flagella

- Cilia and flagella share a common ultrastructure:
	- **Flagella is longer than cilia**
	- **Consists of axonem (center) that surrounded by 9 double microtubules**
	- $-$ **MTOC : basal body** \rightarrow A basal body that anchors the cilium or flagellum
	- A motor protein called dynein, which drives the bending movements of a cilium or flagellum

Substances that interfere microtubule

- **NOKODAZOL** \rightarrow inhibit polymerization \rightarrow substance binds to tubulin **inhibit + end addition**
- **COLCHICINE de-polymerization**
	- from the Autumn Crocus (a lavender)
	- causes disassembly of microtubules

- **VINBLASTIN & VINCRISTIN > de-polymerization of microtubules**
- **TAXOL increase microtubule's stability → as anticancer drug**

Coordination and cooperation between cytoskeletal elements

Figure 18.51 Independent Cdc42 regulation of microfilaments and microtubules to polarize a migrating cell.

Intermediate filament

Resistant to pressure, e.g in cornified skin (including human skin) \rightarrow IF, skin **is waterproof, resistant against bacteria or chemical substances**

Assembly and disassembly \rightarrow because **phosphorilasi dan defosforilasi subunit**

Figure 9.41 A model of intermediate filament assembly and architecture. Each monomer has a pair of globular terminal domains separated by a long α -helical region (step 1). Pairs of monomers associate in parallel orientation with their ends aligned to form dimers (step 2). Depending on the type of intermediate filament, the dimers may be composed of identical monomers (homodimers) or nonidentical monomers (heterodimers). Dimers in turn associate in an antiparallel, staggered fashion to form tetramers (step 3), which are thought to be the basic subunit in the assembly of intermediate filaments. The organization of the tetrameric subunits within the filament is shown in step 4.

Mutant of keratin gene causes peel of/ wound in the skin (Epidermolysis bullosa simplex)

re 16-18. Molecular Biology of the Cell, 4th Edition