

DNA Integrating Vectors (Transposon, Integrase)

- Viral vector → immunogenicity problem, oncogenicity problem, production of a self-replicating vector integrating DNA
- Plasmid DNA → simpler and safer alternative than viral vector; easier to engineer and produce → Integration using transposon and integrase systems
- The primary considerations used to evaluate these nonviral vectors have been their
 - 1) activity to insert specific genetic sequences into chromosomes,
 - 2) genetic cargo capacity,
 - 3) sensitivity to different levels of the relevant recombinase,
 - 4) integration-site preferences, and
 - 5) their propensity to induce chromosomal rearrangements.

Nonviral integrating gene therapy

- Transposon systems
- Sequence specific phage integrases
- Zinc finger nucleases

Transposons

- Mobile genetic elements that can "jump" around genome
- DNA transposons utilize "Cut and paste" mechanism for jumping (remain relatively low copy #)
- Retrotransposons utilize RNA intermediate and "copy and paste" tranposition (increases copy # --LINE transposon alone makes up 21% of human genome!)
- Transposons can be separated from transposase so transposition is controlled independently
- Transposons can be vehicles for transgene delivery and mobilization

Transposon Systems

two major classes of mobile DNA elements:

- Retrotransposons and
- ◆ DNA transposons → have been used for gene therapy

transposons for gene therapy: mostly *Tc1/mariner* family including *Sleeping Beauty* (SB)

Transposon Systems

- The system consists of :
 - DNA sequence to be inserted (transposon)
 - enzyme that accomplishes integration into the genome (transposase).
- Natural transposons :
 - code for the transposase and
 - contain the sequences required for its insertion, called terminal inverted repeat (IR)/direct repeat (DR) elements
- In engineered systems,
 - the transgene cassette \rightarrow between the two IR/DR elements so that it will be inserted
 - The transposase gene may either be placed on the outside of the IR/DR elements, or on a separate plasmid

Transposons as Mutagens

Advantage: mutated gene is "tagged" by transposon for easy identification

Disadvantage: transposons do not insert randomly -some genes hit easily, others not

Copyright © 2004 by the Genetics Society of America DOI: 10.1534/genetics.104.026427

The BDGP Gene Disruption Project: Single Transposon Insertions Associated With 40% of Drosophila Genes

Hugo J. Bellen,* Robert W. Levis,[†] Guochun Liao,^{‡1} Yuchun He,* Joseph W. Carlson,[§] Garson Tsang,[‡] Martha Evans-Holm,[‡] P. Robin Hiesinger,* Karen L. Schulze,* Gerald M. Rubin,[‡] Roger A. Hoskins[§] and Allan C. Spradling^{†,2}

Mouse Transposon Insertion Database

UNIVERSITY OF MINNESOTA

- SB transposon has two perceived limitations:
 - the highest transposition rates require an optimal ratio of transposase to transposon and

(called overexpression inhibition),

 transposition rates appear to be inversely proportional to genetic cargo size.

Genetic material	DNA
Delivering capacity	~ 10 kb
Tropism	Somatic, embryonic, germinal cells, dividing/nondividing cells (?)
Immunogenic potential	The transposase is not toxic, even at high concentrations; no dramatic immune response to repeated administration Similar to non-viral plasmid
Integration sites	Fairly random integration, reduced insertion into other repetitive elements, no rearrangements t the integration sites, no signs of proliferative transformation Can be targeted
Integrated DNA	The gene integrates in a single-copy form; the gene remains intact, no rearrangements
Stable expression	Silencing is Cargo dependent
Transcriptional act	Benign promoter/enhancing activity (100 x < MLT LTR)
Vector	Can be combined with nonviral or with viral approaches; plasmid-based technology with integrating feature
Safely	SB is less likely to integrate into genes than HIV- or AVV-based vectors; no interference with endogeneous Transposons

Main features of the Sleeping Beauty transposon system

TABLE 17.1				
Categorization of Transposable Elements by Transposition Mechanism				
Category	Examples	Host Organism		
I. Cut-and-paste transposons	IS elements (e.g., IS50) Composite transposons (e.g., Tn5) Ac/Ds elements P elements hobo elements piggyBac	Bacteria Bacteria Maize Drosophila Drosophila moth		
II. Replicative transposons	Tn3 elements	Bacteria		
III. Retrotransposons A. Retroviruslike elements (also called long terminal repeat, or LTR, retrotransposons)	Ty1 copia gypsy	Yeast Drosophila Drosophila		
B. Retroposons	F, G, and / elements Telomeric retroposons LINEs (e.g., <i>L1</i>) SINEs (e.g., <i>Alu</i>)	Drosophila Drosophila Humans Humans		

© 2012 John Wiley & Sons, Inc. All rights reserved.

© John Wiley & Sons, Inc.

Commonly Used Transposons

Species of Study	<u>Transposon</u>	Original source		
Drosophila	P element	D. melanogaster		
	piggy bac*	Insects (cabbage looper)		
	minos*	D. hydei		
	*works in many speciesincluding mouse			
C. Elegans	Tc1	C. Elegans		
	note: used for mutagenesis but not transgenesis			
Zebrafish	Tol2	Fish (medaka)		
Mouse	Sleeping Beauty	Fish (salmon/trout)		

Transposition using *Sleeping Beauty* for gene therapy. The transposase binds IR/DR elements in the transposon and mediates recombination at TA dinucleotides in the genome.

The Sleeping Beauty transposable element and its transposition. (A) Components of the element. On top, a schematic drawing of the transposan is shown. The element has a single gene encoding the transposase, which is flanked by terminal inverted repeats (IR/DRs, blue arrows), each containing two binding sites for the transposase (small green arrows). A sequence alignment shows the actual sequences of the external and internal transposase binding sites. The transposase has an N-terminal, bipartite, paired-like DNA-binding domain containing a GRRR AT-hook motif, a nuclear localization signal (NLS), and the DDE catalytic domain. (B) Transposition. The transposase gene within the element can be replaced by a therapeutic gene, and the resultant transposon can be maintained in a simple plasmid vector. The transposase is supplied in trans. The transposase binds to its binding sites within the IR/DR repeats and, together with host factors such as HMGB1, forms a synaptic complex, in which the ends of the transposan are paired. The transposan is excised from the donor molecule and integrates into a new location MOLECULAR THERAPY Vol. 9, No. 2,

Delivery of the Sleeping Beauty system into cells. (A) Two-component system, in which the transposon containing a therapeutic gene and the transposase gene are maintained on separate plasmids. (B) cis-vector, in which the transposon containing a therapeutic gene and the transposase gene are maintained on the same plasmid. (C) The transposon containing the therapeutic gene is supplied with recombinant transposase protein. Possibly, "transposonsomes" consisting of transposon DNA precomplexed with transposase can be formulated, but this technology is not established yet. (D) Combination of the transposon plasmids with nonviral gene transfer. The plasmid vectors can be complexed with liposomes, PEI, or any other reagent (green, amorphous objects) used for gene transfer. The transposon containing a selectable antibiotic resistance gene is transfected either with or without a transposase-expressing helper plasmid. Transfected cells are placed under antibiotic selection. The dramatic increase in the number of resistant cell colonies in the presence of transposase is the result of transposition of the element from the plasmid vector into chromosomes.

Trangene delivery by Sleeping Beauty (SB) transposition.

(a) The Sleeping Beauty transposon system. the transposon and the transposase can be provided on the same molecule (cis configuration, left); or on different molecules (trans configuration, middle and right). GOI is designated for Gene of Interest.
(b) Cellular entry. The transposon is a non-viral system, it needs to be combined by either viral or non-viral delivery. The nuclear localization signal (NLS) of the transposase promotes active nuclear entry. The pre-integration complex consists of the cargo flanked by IRs and at least four transposase molecules (blue balls) recognizing the IRs. SB transposon integrates into TA-dinucleotides, otherwise the integration profile is fairly random. The targeted TA is duplicated at the site of integration, framing the de novo integration. The cleavage and integration cassette into a chromosome result in long-term expression of the GOI.

TABLE 2. Summary of gene therapeutic approaches using Sleeping Beauty						
Approach	Vector	Cell type	Method of delivery	Transferred gene	Model	Special features
Nonviral	Plasmid	Hepatocyte/ mouse	Hydrodynamic tail-vein injection	lacZ α1-antitrypsin factor IX	Wild type Wild type Hemophilia B	5–6% integration, therapeutic-level long-term expression
Nonviral (<i>ex vivo</i>)	Plasmid	Keratinocyte/ human patients	Primary cell transfection/ selection	LAMB3	Junctional epidermolysis bullosa	Therapeutic-level long-term expression
Nonviral	Plasmid	Hepatocyte/ mouse	Hydrodynamic tail-vein injection	FAH	Tyrosinemia I	4% integration, long-term expression
Nonviral	Plasmid	Lung/ mouse	PEI/hydrodynamic tail-vein injection	luciferase	Wild type	2–3% integration, long-term expression
Viral	Adenovirus/ transposon hybrid	Hepatocyte/ mouse	Tail-vein injection/ infection	lacZ factor IX	Wild type Hemophilia B	Therapeutic-level long-term expression

Hydrodynamic delivery of transposon DNA to liver.

Table 1. Examples of successful DNA transposon-based gene delivery in disease models.

Disease	Delivered gene	Model organism or cell type	DNA-transposon used	References
Hemophilia A	Human clotting factor VIII	Mouse	Sleeping Beauty	[60-62]
Hemophilia B	Human clotting factor IX	Mouse	Sleeping Beauty	[57]
Inherited type I tyrosinemia	hFAH ^a	Mouse	Sleeping Beauty	[58]
Glioblastoma	$sEGF\mbox{-}R^b$ and $AE\mbox{-}FP^c$	Mouse	Sleeping Beauty	[69]
Junctional epidermolysis bullosa	hLAMB-3 ^d	Human patient derived cells	Sleeping Beauty	[59]
Pulmonary hypertension	eNOS*	rat	Sleeping Beauty	[97]
Lung allograft fibrosis	hIDO ^f	rat	Sleeping Beauty	[63]
Mucopolysaccharidosis, type I and VII	hIDUA ^g and/or hGUSB ^h	Mouse	Sleeping Beauty	[64,65]
Crigler-Najjar syndrome, type I	hUGT1A ⁱ	rat	Sleeping Beauty	[66]
Ovarian cancer	suicide gene ^j	Mouse ovarian tumor	PiggyBac	[70]
Ovarian cancer	suicide gene ^j	Human ovarian adenocarcinoma cell line	PiggyBac	[72]
B-lymphoid malignancies	CAR ^k	Mouse primary T cells	Sleeping Beauty	[77]
B-lymphoid malignancies	CAR ^k	Primary human T cells/mouse tumor	Sleeping Beauty	[98]
Solid tumor (murine xenograft of)	HER2 ¹ -CAR ^k	Human peripheral blood mono- nuclear cells	PiggyBac	[71]
Fanconi anemia, type C	FANC-C ^m	Human lymphoblastoid cells	Sleeping Beauty	[67]
Skin inflammation	Human $\beta 1$ and $\alpha 2$ integrin	Pig	Sleeping Beauty	[99]
Osteosarcoma lung metastase	CAR^k and $IL-11R\alpha^n$	T cells/mouse tissue	Sleeping Beauty	[100]
Pulmonary fibrosis	miR-29	Mouse lung tissue	Sleeping Beauty	[101]

a hFAH, human fumaryl acetoacetate hydroxylase. b. sEGF-R, soluble endothelium growth factor receptor. c. AE-FP, angiotensin-endothelin fusion protein. d. hLAMB-3, human laminin-\$3. e. eNOS, endothelial nitric oxide synthase. f. hIDO, human indoleamine-2-3-dioxygenase. g. hIDUA, human a-L-iduronase. h. hGUSB, human & glucuronidase. i. hUGT1A, uridinediphosphoglucuronate glucuronosyl transferase-1A1. j. Herpes simplex thymidine kinase. k. CAR, chimeric antigen receptor. I. HER2, human epidermal growth factor 2. m. FANC-C, Fanconi anemia gene C. n. IL-11Ra, interleukin-11 receptor a; o. miR-29, microRNA-29.

Integrase Systems

- An integrase is a recombinase enzyme that is capable of integrating DNA, usually that of a virus, into another piece of DNA, i.e the host chromosome
- Bacteriophage DNA can be integrated into the host chromosome by an integrase.

 two categories of recombinases →dependent on the amino acid responsible for cleaving the DNA, either a tyrosine or serine residue

- Integrases recombine two distinct sequences to create hybrid sites that can no longer be recognized and recombined by the integrase, making integration irreversible.
- φ C31 integrase \rightarrow most favorable properties for gene therapy.

Integration using φ C31 integrase for gene therapy. The integrase binds to both the *attB* sequence supplied on the donor plasmid and native pseudo *attP* sequences in the genome, then recombines the DNA to integrate the transgene permanently.

The DNA is cleaved at a core sequence in the *att* sites, and the DNA-integrase complex rotates to form the recombination products. The resulting hybrid *att* sites are termed *attL* and *attR*, because they are found to the left (5) and right (3) of the phage genome.

Wild-type φ C31 integrase cannot perform the excision reaction between *attL* and *attR* \rightarrow integration is irreversible

Mechanistic particularities of site-specific recombinases

- A) Tyrosine recombinase protomers form dimers only after associating with the left- and right-hand arms of the participating recognition target sites, here, minimal sites with two 13-bp inverted repeats surrounding the 8-bp spacer. Guided by interprotomer contacts, association of two 34-bp sites occurs in an antiparallel fashion, yielding the synaptic complex. SSBs are introduced into the 5 margin of the spacers at either 8-bp (Flp) or 6-bp (Cre) distances.
- B) Serine recombinases recombine two educt-recognition sites, attP and attB. Each of these is characterized by two different protomer-binding arms (L and R) surrounding the 2-bp crossover region. Although not strictly palindromic, these arms resemble inverted repeats. Formation of recombinase dimers is dominated by NTD contacts before synapsis. Synapsis occurs via coiled-coil (CC) motifs residing in the CTDs. Within the tetrameric synaptosome complex synchronous staggered DSBs are induced, followed by strand exchange. This is achieved by subunit rotation to induce new interarm (L1:R2) contacts for protomers that remain bound to dsDNA portions. Product sites are attL (structure L-O-L) and attR (structure R-O-R).

Belur et al. Molecular Cancer 2011, 10:14 Inhibition of angiogenesis and suppression of colorectal cancer metastatic to the liver using the Sleeping Beauty Transposon System

