oki neswan (fmipa-itb)

Dalil l'Hôspital dan Bentuk Tak Tentu

Aturan limit

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

hany dapat digunakan jika $\lim_{x\to c} g\left(x\right) \neq 0$. Maka teorema atau aturan tersebut tidak dapat digunakan untuk

$$\lim_{x \to 0} \frac{\sin x}{x}, \ \lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 + 2x - 8}, \ \ \lim_{x \to c} \frac{f(x) - f(c)}{x - c},$$

Limit ketiga adalah limit yang khusus, nilai limit ini disebut turunan dari f di c. $\lim_{x\to c} f(x) \neq 0$, maka $\lim_{x\to c} f(x) = \pm \infty$, tergantung pada nilai $\lim_{x\to c} f(x)$.

Dalil l'Hospital merupakan metoda untuk menyelesaikan $\lim_{x\to c} \frac{f(x)}{g(x)}$ jika $\lim_{x\to c} f(x) = 0 = \lim_{x\to c} g(x)$, disebut bentuk tak tentu $\frac{0}{0}$. Jika syarat-syaratnya dipenuhi, maka

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Dalil l'Hosiptal dapat diperluas untuk kasus $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = \pm \infty$, disebut bentuk tak tentu $\frac{\infty}{\infty}$.

Theorem 1 (l'Hospital) Misalkan $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$ dan $\lim_{x\to c} \frac{f'(x)}{g'(x)}$ ada (hingga atau tak berhingga). Maka

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Teorema berikut digunakan untuk membuktikan teorema di atas

Theorem 2 Misalkan fungsi f dan g kontinu pada [a,b] dan mempunyai turunan pada (a,b). Jika $g'(x) \neq 0$ untuk tipa $x \in (a,b)$, maka terdapat $c \in (a,b)$ sehingga

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Berikut adalah bukti bagi versi sederhana dari Teorema l'Hospital.

Lemma 3 Jika f(x) mempunyai turunan di c, maka terdapat fungsi E(x) sehingga

$$f(x) = f(a) + f'(c)(x - c) + E(x)$$
 dan $\lim_{x \to c} \frac{E(x)}{x - c} = 0$.

Misalkan f(x) dan g'(x) mempunyai turunan di c. Maka menurut lemma di atas terdapat $E_1(x)$ dan $E_2(x)$ sehingga

$$f(x) = f(c) + f'(c)(x - c) + E_1(x) \text{ dan } \lim_{x \to c} \frac{E_1(x)}{x - c} = 0$$

$$g(x) = g(c) + g'(c)(x - c) + E_2(x) \text{ dan } \lim_{x \to c} \frac{E_2(x)}{x - c} = 0$$

Selanjutnya

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(c) + f'(c)(x - c) + E_1(x)}{g'(c) + g'(c)(x - c) + E_2(x)}$$

$$= \lim_{x \to c} \frac{f'(c)(x - c) + E_1(x)}{g'(c)(x - c) + E_2(x)}$$

$$= \lim_{x \to c} \frac{f'(c) + \frac{E_1(x)}{x - c}}{g'(c) + \frac{E_2(x)}{x - c}} = \frac{f'(c) + 0}{g'(c) + 0} = \frac{f'(c)}{g'(c)}$$

Maka terbukti

Theorem 4 (Simplified l'Hospital) Jika f(x) dan g'(x) mempunyai turunan di c, maka

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}$$

Selain itu Dalil l'Hospital juga berguna untuk menjawab masalah mengenai kekontinuan (continuity) dan keterturunkanan (differentability). Fungsi $f(x) = \frac{e^x - 1}{x}$ tidak terdefinisi di 0. Dapatkah f(x) diperluas sehingga setelah diperluas f menjadi kontinu di 0? Grafiknya menyerupai grafik yang kontinu disetiap x, kecuali berlubang di 0. Dalil l'Hospital memberikan

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x - 0}{1} = 1.$$

Maka fungsi

$$f(x) = \begin{cases} \frac{e^x - 1}{x} & x \neq 0\\ 1, & x = 0 \end{cases}$$

kontinu dimana-mana. Apakah f(x) ini mempunyai turunan di 0?

$$\lim_{x \to 0} \frac{\frac{e^x - 1}{x} - 1}{x - 0} = \lim_{x \to 0} \frac{e^x - x - 1}{x^2} \stackrel{L}{=} \lim_{x \to 0} \frac{e^x - 1}{2x} \stackrel{L}{=} \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2}$$

Tanda $\stackrel{L}{=}$ menyatakan penggunaan dalil l'Hospital.

Bentuk Tak Tentu: $0 \cdot \infty$ dan $\infty - \infty$

Kadang-kadang kita harus berhadapan bentuk tak tentu selain $\frac{0}{0}$ dan $\frac{\infty}{\infty}$. Dengan sedikit perjuangan, dapat dikembalikan ke bentuk $\frac{0}{0}$ atau $\frac{\infty}{\infty}$. Sebagai contoh $\lim_{x\to\infty} x \sin\frac{1}{x}$ mempunyai bentuk $0\cdot\infty$. Agar Teorema l'Hospital dapat digunakan, fungsi harus diubah ke bentuk hasil bagi dua fungsi.

$$\lim_{x \to \infty} x \sin \frac{1}{x} = \lim_{x \to \infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} \stackrel{L}{=} \lim_{x \to \infty} \frac{\left(\cos \frac{1}{x}\right)\left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}} = \lim_{x \to \infty} \left(\cos \frac{1}{x}\right) = 1$$

Demikian juga, bentuk $\infty - \infty$ harus diubah ke bentuk hasil bagi dua fungsi.agar Teorema l'Hospital dapat digunakan.

$$\lim_{x \to 0^{+}} \left(\frac{3x+1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0^{+}} \frac{(3x+1)\sin x - x}{x\sin x} \stackrel{L}{=} \lim_{x \to 0^{+}} \frac{3\sin x + (3x+1)\cos x - 1}{\sin x + x\cos x} \stackrel{L}{=} \lim_{x \to 0^{+}} \frac{3\cos x + 3\cos x - (3x+1)\sin x}{\cos x + \cos x - x\sin x} = \frac{3+3}{2} = 3$$

Bentuk Tak Tentu: $0^0, \infty^0$, dan 1^∞

Limit-limit dengan bentuk $0^0, \infty^0$, dan 1^∞ biasanya diselesaikan dalam tiga langkah: (1) melakukan logaritma pada fungsi, (2) menentukan limit dari $\ln y$, dengan menggunakan Teorema l'Hospital, (3) Menentukan limit fungsi semula dengan eksponensiasi. Sebagai contoh, perhatikan

$$\lim_{x \to 0^+} \left(x+1\right)^{\cot x}$$

Ketika $x \to 0^+$, basis x+1 menuju 0 sedangkan $\cot x$ menuju ∞ . Akibatnya, kita tidak dapat segera memperoleh limitnya. Kita membutuhkan bantuan logaritma.

$$y(x) = (x+1)^{\cot x}$$

$$\ln y(x) = \cot x \ln (x+1) = \frac{(\cos x)(\ln x + 1)}{\sin x}$$

Bentuk Logaritma $\ln y$ pada ruas kanan berupa pembagian dan ini membuka pintu penggunaan dalil l'Hospital.

$$\lim_{x \to 0} \ln y \left(x \right) = \lim_{x \to 0} \frac{\left(\cos x \right) \left(\ln x + 1 \right)}{\sin x} \stackrel{L}{=} \lim_{x \to 0} \frac{\left(-\sin x \right) \left(\ln x + 1 \right) - \left(\cos x \right) \left(-\frac{1}{x+1} \right)}{\cos x}$$
$$= \lim_{x \to 0} \frac{1}{1} = 1$$

Kita memperoleh $\lim_{x\rightarrow0}\ln y\left(x\right)$, tetapi yang diinginkan adalah $\lim_{x\rightarrow0}y\left(x\right)$. Gunakan eksponensial.

$$\lim_{x \to 0} y(x) = \lim_{x \to 0} e^{\ln y(x)} = e^{\lim_{x \to 0} \ln y(x)} = e^{1} = 1$$

Theorem 5 Jika $\lim_{x\to a} \ln y(x) = L$, maka

$$\lim_{x \to a} y(x) = \lim_{x \to a} e^{\ln y(x)} = e^{L}.$$