
2017 AIMS Programme

Chonnam National University, Korea

CNU AIMS Programme Overview

The AIMS Programme is designed to facilitate both in-depth academic training and invaluable experiences in Korea for university students, who have engineering major from UTM(University of Technology Malaysia), Malaysia and ITB(Institute of Technology Bandung), Indonesia. While participating in this program, students will complete courses related to their field of specialization, perform research projects with Korean graduate students, visit local industry leaders in engineering, undertake cultural experiences and more.

% CNU AIMS Buddy Program

The buddy program is designed to ensure that every student feels comfortable in their new surroundings. With their CNU Korean buddies, students can engage in a life-long friendship, as well as learn about student life in Korea and venture around Gwangju. (One Korean buddy for each AIMS participant)

Contact Point

Name: Ms. Byeol Jeon(AIMS Programme Coordinator)
Phone: +82-62-530-1272
Email: jeonbeyl@jnu.ac.kr; jeonbeyl@gmail.com;
Mailing Address: Ms. Byeol Jeon, Office of International Affairs, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea

Curriculum (Program Components)

- 1. Classroom Instruction: 3~5 courses (45 hours / 3 credit each)
- 2. One-on-one Mentor Project(Lab meeting): Once a week(15 weeks)
- 3. Industry Site-visits: Every Other Weekends (10 Sites / 30 hours)
- 4. Korean Culture Experiences: Every Other Saturday (7 Sites / 35 hours)

- Seoul, Jeonju, Suncheon, etc.

- 5. Korean Language Study
 - Regular evening course(Language Education Center): Twice a week(38 hours / 15 weeks)
 - Coffee Hour: Once a week(15 weeks) with international students

Scholarship

1. **Tuition Fee:** Students should pay tuition fee to their home university. (CNU tuition fee will be waived)

2. **Dormitory & Meal plan Fee:** CNU will support the fee / 3 meals a day(7 days a week)

3. **Program Fee:** Lab mentoring, Visiting institute, Korean language classes, Korean culture trips (CNU will support the fee)

□ Applicants' qualification

- <u>5</u> students, who have 'Engineering of Material Science / Chemical / Mechanical / Energy' major, will be selected

Application Process

	Deadline	Remark
Online Application	30th, Oct. (Sun)	Email Submission (jeonbeyl@jnu.ac.kr)
Announcement (Acceptance)	Around Nov. 2016	 Students, who get the permission from CNU, will begin to prepare the required documents for admission. Document form files will be sent by their email. While students prepare required documents, CNU will cooperate with Korean Embassy in Malaysia for issuing their visa
Pick-up service	TBD	@ Incheon Airport (CNU official pick-up service)
Orientation	TBD	Orientation for CAMPUS-Asia AIMS exchange students
Program start	2nd March (Thu), 2017	2017 CAMPUS-Asia AIMS Program begins(English lecture starts)

Course Syllabus

Students can choose 3~5 courses regarding with the below course list.

Your Korean buddy will help you register classes on the CNU portal website (http://portal.jnu.ac.kr)

No	Course Title	Professor	Time	Period	E-Mail
1	Engineering Mathematics 1	Prof. Seunghun Jung	Mon 1, 2 Wed 1	9:00 ~11:00	shjung@jnu.ac.kr
2	Engineering Dynamics	Park, Gyuhae	Mon 7, 8 Wed 7	15:00 ~17:00	gpark@jnu.ac.kr
3	Mechanical Behavior of Materials	Hoonsung Cho	Tue 1 Thu 1	9:00 ~10:30	Cho.hoonsung@jnu.ac.kr
4	Sintering Theory and Phenomena	John Gerard Fisher	Tue 5 Thu 5	15:00 ~16:30	johnfisher@jnu.ac.kr
5	Future energy resource development engineering	Tam Tran	Tue 2 Thu 2	10:30 ~12:00	tamtran@jnu.ac.kr

% The subject is to change depending on the CNU lecturers' availability.

Course Name	Engineering Mathematics1	Credit	3
Instructor	Prof. Seunghun Jung	Lecture Hours	Mon 1, 2 Wed 1
Department	School of Mechanical Eng.	Classroom	1A-306
Office	1A-408	Office hours	
Office telephone	(1665)	e-mail	shjung@jnu.ac.kr
ТА		Course Grade	Undergraduate 1 st year
Classification	Mandatory subject	Prerequisites	Calculus I

Course Overview	This course helps students to acquire knowledge on basic mathematics that is required to solve various engineering problems. During the first half, how to solve ordinary differential equations will be dealt with, and linear algebra including Laplace transform and vector matrix will be covered during the second half.
Lecture Objectives	To understand ordinary differential equations, linear algebra and vector matrices To improve the capability to solve engineering problems regarding to mathematics, natural science, engineering, by practicing its simplified standard problems To improve the capability to solve the problems creatively by practicing to model the engineering problems with the mathematical problems
Teaching	Writing on blackboard
Method	All lecture will be given in English
Grading	Quiz(20%), Midterm(30%), Final(30%), HW(10%), A/P(10%)
References	"Advanced Engineering Mathematics" (10th Edition), Kreyszig, John Wiley & Sons Inc. (2011)

[Relation with Program Outcome]

No.	Program Outcomes	Weight
1	An ability to apply knowledge of mathematics, basic science, engineering, and information technology	100
2	An ability to design and conduct experiments, as well as to analyze and interpret data	20
3	An ability to devise a system, component, or process to meet desired needs within realistic constraints	
4	An ability to identify, formulate, and solve engineering problems	
5	An ability to use techniques, skills, and engineering tools necessary for	30

Week	Description	Remarks
1	Orientation Chapter 1. First-order Ordinary Differential Equations (ODEs)	
2	Chapter 1. First-order ODEs	
3	Chapter 2. Second-order ODEs	Homework #1
4	Chapter 3. High-order ODEs	Quiz #1
5	Chapter 4. Laplace Transform	
6	Chapter 4. Laplace Transform	
7	Chapter 5. Series solutions of ODEs. Special Functions	Homework #2
8	Midterm exam week	Midterm exam
		(10/19, In-class)
9	Chapter 5. Series solutions of ODEs. Special Functions	
10	Chapter 6. Linear Algebra: Matrices, Vectors, Determinants. Linear Systems	
11	Chapter 6. Linear Algebra: Matrices, Vectors, Determinants. Linear Systems	Homework #3
12	Chapter 7. Linear Algebra: Matrix Eigenvalue Problems	Quiz #2
13	Chapter 8. Systems of ODEs	
14	Chapter 9. Phase plane. Qualitative methods (stability)	Homework #4
15	Final exam week	Final exam
15		(12/14, In-class)

Course	Engineering Dynamics	Credit	3
Instructor	Park, Gyuhae	Lecture	Mon 7, 8 Wed 7
Depart-	Mechanical Engineering	Classroom	Engineering 1A-303
Office	Engineering 1A-420	Counsel	W14:00-16:00
Office	062-530-1661	E-mail	gpark@jnu.ac.kr
TA		Course	Undergraduate 2nd
Classifica		Pre-	

Lecture	The principal goal of this course is for students i) to learn the fundamental concepts					
objectives	of engineering dynamics and ii) to learn the mathematical formulations of dynamics					
	problems and iii) to analyze the dynamics of particles and rigid bodies with					
	applications.					
	First, the kinematic properties, including displacement, velocity, acceleration, angular					
	velocity and angular acceleration will be introduced. In addition, the concepts of the					
	mass and inertia moment will be studied along with how to derive these properties.					
	Students will then learn how to derive equation of motions of mechanical systems					
	using free body diagrams. The concepts of work, energy, and momentum will					
	also be studied and applied to analyze complex					
	engineering systems.					
Course	Kinematics of particles					
Overview	Kinetics of particles					
	Systems of particles					
	Kinematics of rigid bodies					
	Kinetics of riaid bodies					
Teaching	- Classroom lecture with Power point slides, a classroom board will be used when					
	necessary.					
Grading	Midterm I & II (45%), Final (35%), Homework (10%), Students' class activities(5%)					
Reference	"VECTOR MECHANICS for ENGINEERS"					
	Ferdinand P. Beer, E. Russell Johnston, and Phillip J. Cornwell,					
	McGraw-Hill, Tenth Edition					
	Woordwinn, Forth Eduor					

	[Relation with regram outcomes]			
No.	Program Outcomes	Weight		
1	an ability to apply knowledge of mathematics,	90		
2	an ability to design and conduct experiments, as well as to	30		
3	an ability to devise a system, component, or process to meet	70		
4	an ability to identify, formulate, and solve engineering problems 40			
5	an ability to use techniques, skills, and engineering tools necessary for 70			
6	an ability to function in multi-disciplinary teams			
7	an ability to communicate effectively			
8	a recognition of the need for, and an ability to engage in life-long learning			
9	a broad understanding of the impact of engineering solutions in			
10	a knowledge of contemporary issues			
11	an understanding of professional and ethical responsibilities			
12	an understanding of other cultures and an ability to engage in			

[Relation with Program Outcomes]

[Weekly Schedule]

Wee	Description	Remarks
1	Kinematics of Particles: Rectilinear Motion	
2	Kinematics of Particles: Curvelinear Motion	
3	Kinetics of Particles: Newton's Law	
4	Kinetics of Particles: Newton's Law	
5	Kinetics of Particles: Energy and Momentum Method	
6	Kinetics of Particles: Energy and Momentum Method	
7	Midterm Exam	
8	Systems of Particles	
9	Kinematics of Rigid Bodies	
10	Kinematics of Rigid Bodies	
11	Plane Motion of Rigid Bodies: Forces and Accelerations	
12	Plane Motion of Rigid Bodies: Energy and Momentum Methods	
13	Plane Motion of Rigid Bodies: Energy and Momentum Methods	
14	Supplementary Lectures	
15	Final Exam	

Course Name	Mechanical Behavior of Materials	Credit	3
Instructor	Hoonsung Cho	Lecture Hours	Tue.1 Thu.1 (09:00~10:15)
Department	School of Materials Science and Engineering	Classroom	6-218
Office	6-310	Counsel	
		Hours	
Office	530-1717	E-mail	cho.hoonsung@jnu.ac.kr
Telephone			
ТА		Course	Junior, Senior
		Grade	
Classifica	Elective course	Pre-	
-tion		requisites	

-

П

Course Overview	The aim of this course is to provide traditional topics in the area, such as materials testing, yielding and plasticity, stress-based fatigue analysis, and creep. The relatively new methods of fracture mechanics and fatigue analysis are also considered in this course.		
Lecture objectives	This course gives a full understanding of elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, and ceramics, and focuses on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior.		
Teaching Methods	Slides Presentation and group study.		
Grading System	 Attendance (10%) Problem Sets (~5 Graded Homeworks or Quizes Over the Course of the Term) (30%) Middle Exam.(30%) Final Exam. The final exam is not cumulative.(30%) 		
References	1. Norman E. Dowling, Mechanical Behavior of Materials		

[Relation with Program Outcomes]

No.	Program Outcomes	
1	An ability to analyze data and to prove theories or hypotheses by experiments	100
2	An ability to identify and formulate challenges for engineering	
3	An ability to use new technologies, reports, appropriate methods for solving challenges in engineering	100

Week	Description	Remarks	
1	Introduction		
2	Structure and Deformation in Materials		
3	A Survey of Engineering Materials		
4	Mechanical Testing: Tension Test and Other Basic Tests		
5	Stress-Strain Relationship and Behavior		
6	Review of Complex and Principal States of Stress and		
7	Midterm Exam		
8	Yielding and Fracture under Combined Stresses		
9	Fracture of Cracked Members		
10	Fatigue of Materials		
11	Stress-Based Approach to Fatigue		
12	Fatigue Crack Growth		
13	Plastic Deformation Behavior and Models for Materials		
14	Time-Dependent Behavior: Creep and Damping		
15	Final Exam		

Course Name	Sintering Theory and Phenomena	Credit	3	
Instructor	John G Fisher	Class time	Tue, Thur 5 (15:00-16:15)	
Depart- ment	Materials Science & Engineering	Classroom	Lecture room 110	
Office	Engineering Building 6 Room 315	Counsel Hours	Wednesday 11:00 am	
Contact Number	062-530-1702	E-mail	johnfisher@jnu.ac.kr	
ТА	None	Course Grade	Undergraduate 3 rd / 4 th year	
Classifica- tion	A type – 100% Eng. Elective Course	Pre- requisites	Physics, Chemistry, Materials Science	
Course Overview	The fundamentals of sintering (densification and grain growth) will be explained. The basic principles of microstructre development during sintering will be given. The course can be divided into 6 parts. In part 1, the basics of sintering science will be discussed. In part 2, solid state sintering will be described. In part 3, grain growth in the solid state will be taught. In part 4, microstructure development will be covered. Part 5 will cover the sintering of ionic compounds. Finally, part 6 will deal with liquid phase sintering.			
Lecture objectives	To teach the theory and phenomena of sintering and grain growth in ceramics			
Teaching Methods	Powerpoint lectures			
Grading	Attendance, mid-term exam, end of term exam.			

System					
	Sintering: Densification, Grain Growth & Microstructure, Suk-Joong L. Kang,				
References	(Elsevier), materials prepared by the lecturer.				

[Relation with Program Outcomes]

No.	Program Outcomes	Weight	CEATcol
1	An ability to apply knowledge of mathematics, basic science, engineering and information technology to solve problems in	105	
	engineering.		
4	An ability to utilize the latest information, research results and	105	
	appropriate tools to solve problems in engineering.		
5	An ability to design systems, components and processes within realistic	90	
	constraints.		

Week	Description	Remarks
1	Introduction, sintering processes, thermodynamics of the interface	
2	polycrystalline microstructures, initial stage sintering	
3	intermediate & final stage sintering	
4	Normal grain growth & second phase particles	
5	Grain boundary segregation & grain boundary migration	
6	Interface migration under chemical inequilibrium, abnormal grain growth	
7	Midterm Exam	
8	Grain boundary energy and sintering	
9	Grain growth and densification in porous materials	
10	Sintering additives and defect chemistry	
11	Densification and grain growth in ionic compounds	
12	Basis of liquid phase sintering	
13	Grain shape and grain growth in a liquid matrix	
14	Densification models & theories	
15	Final Exam	

Course Name	Economic resource	Credit	3
Instructor	Tam Tran	Class time	TUE 2, THU 2
Depart- ment	Department of Energy & Resources Engineering	Classroom	College of Engineering 3B-213
Office	College of Engineering 3A-313	Counsel Hours	any time
Contact Number	062) 530-0462	E-mail	tamtran@jnu.ac.kr
ТА		Course Grade	third year student
Classifica- tion	an required course	Pre- requisites	
Course Overview	The course deals with aspects of cost accounting for resource project evaluation, including basic principles of project cost estimation (capex and opex), economic evaluation and funding of resource development projects.		
Lecture objectives	To train students on basic aspects of economics and cost accounting, applicable for resource project economic evaluation		
Teaching Methods	Lectures and case studies are presented in class. Individual project on cost evaluation and economic analysis of a resource development is conducted.		

Grading	
System	Mid semester test: 40%, Project: 20%, Final exam: 40%. Class attendance is recorded
References	Textbook published by CNU: Process Engineering Economics, Tran and Kim

No. **Program Outcomes** Weight CEA Tool an ability to apply knowledge of mathematics, basic science, 1 30 engineering, and information technology an ability to design and conduct experiments, as well as to analyze and 2 60 interpret data an ability to devise a system, component, or process to meet desired 3 30 needs within realistic constraints 60 4 an ability to identify, formulate, and solve engineering problems an ability to use techniques, skills, and engineering tools necessary for 5 60 engineering practice Recognizing the needs for self-development and the ability to actively 8 60 participate in future development with gained knowledgement

[Relation with Program Outcomes]

Week	Description	Remarks
1	Introduction: Economic evaluation concepts in mineral resource	
	development	
2	Basic Cost accounting concepts: interest rate, time value of money, net	
2	present value, etc.	
3	Depreciation	
4	Taxation related to resource development	
5	Discount Cashflow analysis for resource project evaluation	
6	Calculations of net present value, internal rate of return	
7	Midterm Exam	
8	Spreadsheet training for plant design and cost estimation	
9	Computer lab training – DCF analysis	
10	Cost estimation of capital expenditures	
11	Cost estimation of operating expenditures	
12	Uncertainty and risk analysis for project evaluation	
13	Resource project financing	
14	Case studies on resource project evaluation and course review	
15	Final Exam	