

Integrating Sanitation, Biowaste Management, Energy Production and Agriculture

Univ. Prof. Dr.-Ing. Ralf Otterpohl Director Institute of Wastewater Management and Water Protection

Hamburg University of Technology

Institute of Wastewater Management and Water Protection

Water Key Issues: Soil 1st!

- Humus rich soil Soil has a very high water uptake, cleans it, stores it, keeps moist for plants
- Rainwater Harvesting and Reuse
- Pollution to be avoided at the source: Water Protection
- Efficiency of water utilisation: irrigation, households

Innovative Sanitation

-Blackwater Loop: Sanitation as fertiliser and humus factory

- Terra Preta Sanitation: Low Cost with humus production

Energy and Biowaste

Woodgas stoves and power/cooling/charcoal production for Terra Preta Composting of biomass

Water Key Issues: Soil 1st!

- Humus rich soil Soil has a very high water uptake, cleans it, stores it, keeps moist for plants
- Rainwater Harvesting and Reuse

S

ecto

()

C LO

- Pollution to be avoided at the source: Water Protection
- Efficiency of water utilisation: irrigation, households

Innovative Sanitation

-Blackwater Loop: Sanitation as fertiliser and humus factory

- Terra Preta Sanitation: Low Cost with humus production

Energy and Biowaste

Woodgas stoves and power/cooling/charcoal production for Terra Preta Composting of biomass

Projected Water Scarcity in 2025

Prepared by IWMI as input for the World Water Vision, The Hague, March, 2000.

AGEMENT INSTITUTE

http://iwmi.org

Major problems related to Wastewater (Miss)Management: Pollution of Rivers, Lakes and the Seas Scarcity is often a consequence of inefficient Water Usage

Loss of Soil Fertility (slow but dramatic, global scale) counteraction by returning treated biowaste and faecals

(Map from WWW.FAO.ORG)

The World has strongly detoriated / destroyed **ONE THIRD of all** fertile soils between **1950 and 1990**

> UN Millenium Ecosystem Assessment Report

"Bio-Energy" is often subsidized soil destruction, can create water pollution and contribute to HUNGER

better: Direct Solar Energy, Windpower, Woodgas, Efficiency!

Good Soil makes water

Good Soil prevents drought and flooding

Rainwater Harvesting

- 1. Checkdams
- **2. Infiltration Units**
- 3. Direct Storage

Large Scale:

Bring Water into the Ground through humus rich soil (can take up 150 litres/m²/hour!!)

Free biological treatment in top soil

Combined use of sand-storage and sub-surface dams on the eastern slopes of the Western Ghats.

sub surface dam

from: Dying Wisdom, Indias Traditional Water Harvesting Systems, CSE, India

Pollution Prevention, Wastewater Treatment!

Avoid pollution at source: Green Household Chemicals (at least EU regulations!) Natural Medicine, Source Control in Industry

Apply appropriate treatment techniques

EXPERIMENTAL INVESTIGATION OF GREYWATER TREATMENT BY MORINGA OLEIFERA SEED POWDER

A Master Thesis by: Asri Indiyani JEMES – 20930535

Supervised by: Prof. Ralf Otterpohl Dr. Isabel Capela Mayrina Firdayati

> Institute of Wastewater Management and Water Protection

Presented on: Technische Universität Hamburg-Harburg (TUHH) Institut für Abwasserwirtschaft und Gewässerschutz Wednesday, November 9th, 2011

COMPARISON BETWEEN COAGULANTS

pН

Initial pH of Raw greywater in average: 7,78 M.Oleifera Powder treated water: pH between 7,6 – 7,72 M.Oleifera Solution treated water: pH between 7,27 – 7,71 Alum Sulfate treated water: pH between 6,72 – 7,6

Sludge Volume

Water demand management principles

Internal and external influencing factors

Reducing Water Consumption: Efficient modern Toilets

Well designed flush toilets in Germany work well with 4 Liters of water, 10 Liters is not needed...

Water Key Issues: Soil 1st!

- Humus rich soil Soil has a very high water uptake, cleans it, stores it, keeps moist for plants
- Rainwater Harvesting and Reuse

ectors

()

C C O

- Pollution to be avoided at the source: Water Protection
- Efficiency of water utilisation: Irrigation, households

Innovative Sanitation

-Blackwater Loop: Sanitation as fertiliser

and humus factory

- Terra Preta Sanitation: Low Cost with humus production

Energy and Biowaste

Woodgas stoves and power/cooling/charcoal production for Terra Preta Composting of biomass

Can the same work in housing areas?

Most nutrients and Most organic matter In toilet wastewater: SEPARATE

Geigy, Wiss. Tabellen, Basel 1981, Vol. 1, LARSEN and GUJER 1996, FITSCHEN and HAHN 1998

Toilets and resulting Dilution

Type of Toilet	Daily Flow per P.	Pro and Con's	A
Flushing		+ widely accepted	4
toilet	25-40	- waste of water	
		- high dilution	
Vacuum-		+ low water demand	
toilet		+ well developed (ships)	
		- high-tec / expensive	
Separating	V /	+ little water / little dilution	
toilet		+ simple fertiliser reuse	
		- little experience	F
Waterless	V	+ no water / no dilution	
Urinal	1,2 I	- maintenance required	
Composting-	\ Y	+ no water needed	2
toilet) (- high space demand	
Decisestion toilet	↓ 1,5 I	- maintenance needed	1
Desi	•	++ Desiccation for hot climates	

Low/Non-diluting toilets are the key for new sanitation concepts

Settlement Lübeck-Flintenbreite Water consumption 65 l/capita/day

Double-Houses

Terraced Houses

GEO, March 2009

Historic Amazon: Forest Argriculture in three layers GEO 3/2009

Poor soil can become highly fertile with clever management of biowaste and sanitation

Ecosan innovation

- Mass produced toilets for lactic acid fermentation can be cheap by mass production
- Professional collection and vermicomposting where the humus can be used
- Simple first step for pit latrines: Teach people to collect and reuse urine while adding lactic acid bacteria to the pit and later worms (alternating shallow pits)

Terra Preta is ideally produced with dry toilets with seperate urine collection

However, if it shall be flush for legal or cultural reasons, this can be done in combination with separate urine collection and a fermentation tank (formerly rottebehälter or pre-composting tank)

Urine colletion with individual bottle like in hospitals or Pippinette

Combination of Terra Preta Sanitation With flush toilets

6-2

Sieving unit for solids

Third step: Vermicomposting of feacal

Breakthrough in solids treatment at TUHH (BMBF / IPSWaT)

What do do if there are mainly roofs and roads? AND GALLETTE

PAGEG

ectors (\mathbf{n}) **(**) 0 0 0

Water Key Issues: Soil 1st!

- Humus rich soil Soil has a very high water uptake, cleans it, stores it, keeps moist for plants
- Rainwater Harvesting and Reuse
- Pollution to be avoided at the source: Water Protection
- Efficiency of water utilisation: irrigation, households

Innovative Sanitation

-Blackwater Loop: Sanitation as fertiliser and humus factory

- Terra Preta Sanitation: Low Cost with

inumus production

Energy and Biowaste

Woodgas stoves and power/cooling/charcoal production for Terra Preta Composting of biomass

Carbonisation not incineration: www.WORLDSTOVE.com

Creating biochar while coocking Biochar for Terra Preta Compost makes rich soil

Organic waste is DRAMATICALLY NEEDED for keeping humus levels up! **Good Luck: Power**, Heat, **Cooling and** charcoal can come together

> Rice Husc to Power and charcoal Senegal, Climatefarming

Water Key Issues: Soil 1st!

- Humus rich soil Soil has a very high water uptake, cleans it, stores it, keeps moist for plants
- Rainwater Harvesting and Reuse
- Pollution to be avoided at the source: Water Protection
- Efficiency of water utilisation: irrigation, households

Innovative Sanitation

- -Blackwater Loop: Sanitation as fertiliser and humus factory
- Terra Preta Sanitation: Low Cost with humus production

Energy and Biowaste

Woodgas stoves and power/cooling/charcoal production for Terra Preta Composting of biomass

Much is possible, let us do it for our childrens future!

- www.tuhh.de/aww
- <u>www.terra-preta-sanitation.net</u> (Design Award 50.000 \$ still open)
- <u>www.anamed.net</u>
- www.rainwaterharvesting.org

Books:

- Montgomery: Dirt
- Secrets of the soil