GAS CHROMATOGRAPH-MASS SPECTROMETER ANALYSIS AND ACUTE ORAL TOXICITY OF CINNAMOMUM BURMANNII, NESS EX BL. ESSENTIAL OIL

HERDWIANI W1*, SOEMARDJI AA2, EL-FAHMI3, TAN MI4

1Department of Pharmacology, Faculty of Pharmacy, Setia Budi University, Surakarta, Indonesia. 2Department of Pharmacology, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia. 3Department of Pharmaceutical Biology School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia. 4Department of Biology School of Life Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia Email: herdwiani@gmail.com

Received: 08 February 2016, Revised and Accepted: 10 February 2016

ABSTRACT

Objective: Cinnamomum burmannii Nees Ex Bl. essential oil has cytotoxic effect on a lot of cancer cell lines. An investigation was carried out to analyze the possible chemical components from C. burmannii essential oil and evaluate its acute toxicity, before an effective formulation of C. burmannii essential oil as anticancer drugs.

Methods: This study was analyzed chemical components from C. burmannii essential oil by gas chromatograph-mass spectrometer (GC-MS) and evaluated the acute oral toxicities of C. burmannii essential oil in strain Bald/C mice.

Results: This analysis revealed that C. burmannii essential oil contains the active compound cinnamaldehyde (71.814%), trans-cinnamyl acetate (11.09%), coumarin (3.41%), and cineol (1.77%). Acute oral toxicity of C. burmannii essential oil with lethal dose 50 367.911 mg/kg BW.

Conclusion: C. burmannii essential oil contains the active compound cinnamaldehyde, trans-cinnamyl acetate, coumarin and cineol. Acute oral toxicity conclusively indicates C. burmannii essential oil includes category 5 practically non-toxic.

Keywords: Gas chromatograph-mass spectrometer, Cinnamomum burmannii, Essential oil, Acute toxicity.

INTRODUCTION

The study of adverse effects, poisonous, and harmful of drugs and other chemicals compound in plants, which may increase weakness in the general health or the chances of mortality, mentally as well as physically is the definition of toxicology. Toxicological studies may be three types depending on the duration of drug exposure to animals such acute, subacute, and chronic toxicological studies [1].

Adverse effects of a single dose of a substance occurring following oral or dermal administration, or multiple doses given within 24 hrs, or an inhalation exposure of 4 hrs were referred by acute toxicological studies [2]. Animals are observed individually after dosing at least once during the first 30 minutes, periodically during the first 24 hrs, with special attention given during the first 4 hrs, and daily thereafter, for a total of 14 days, except where they need to be removed from the study and humanely killed for animal welfare reasons or are found dead. However, the duration of observation should not be fixed rigidly. It should be determined by the toxic reactions, time of onset and length of recovery period, and may thus be extended when considered necessary. The times at which signs of toxicity appear and disappear are important, especially if there is a tendency for toxic signs to be delayed [3]. All observations are systematically recorded with individual records being maintained for each animal. Additional observations will be necessary if the animals continue to display signs of toxicity. Observations should include changes in behavior pattern, autonomic and central nervous systems, somatomotor activity, eyes and mucous membranes, skin and fur, circulatory, and respiratory [3]. Salivation, diarrhea, tremors, convulsions, lethargy, sleep, and coma should be directed to observations. The principles and criteria summarized in the Humane Endpoints Guidance Document should be taken into consideration [3]. Animals should be humanely killed if found in a moribund condition and animals showing severe pain or enduring signs of severe distress. The time of animals death because of humane reasons or found dead, should be recorded as precisely as possible [4].

The bark and leaves Cinnamomum burmannii (Family: Lauraceae) are often added to food preparations to improve aroma and taste. It has been found to possess potent antidiabetic, antimicrobial, antioxidant, and antipyretic properties and has been used in traditional Chinese and Indian medicine. Cinnamon bark extract effectively inhibits α-glucosidase leading to suppression of postprandial hyperglycemia in streptozotocin-induced diabetic rats loaded with sucrose, maltose [5].

Review of literature indicates that Cinnamomum showed various cytoxic activities in cancer cell line, namely, basal cell carcinoma (BCC-1), breast cancer (MCF7) cell line, epidermoid carcinoma (A431), human cancer promyelocytic leukemia (HL-60), human cervical carcinoma (SiHa), human colorectal carcinoma (HCT 116, HT 29, and SW 480), human epithelioid cervix carcinoma (HeLa), human globlastoma multiforme tumor (T98G), human leukemia (K562) and leukemia rat embryonic fibroblast (3R5F), human liver cancer (HeP-1), human lymphoblast lung (U937), human melanoma (A375) cell lines, human nasopharyngeal carcinoma (NPC/HK1 and G666-1), human oral cancer (KB) lymphocytic leukemia (L1210) cells, human oral squamous cell carcinoma (Ca9-22 and SCC12) human prostate cancer cell (DU145 and PC-3), tumor cell line lymphoma melanoma, and cervix hepatoma Hep G2 cells line (Hep G2 and Hep 3B) cell lines [6,7]. The effect of cinnamaldehyde on Hep G2 cell apoptosis was concluded on the CD95 (APO-1/CD95) signal transduction and p53 pathways. Several studies have shown that the B-cell lymphoma 2 (Bcl-2) family of proteins is central of apoptotic regulation [8,9].

Before an effective formulation of C. burmannii essential oil as anticancer drugs, evaluation of its toxic effects is required. The present work evaluated the acute oral toxicities of C. burmannii essential oil using OECD 423 in female Mus musculus mice at the dosage of 300, 500, 1000, 1500, 2000, and 3000 mg/kg BW of an animal for a period of 14 days. The main purpose of the acute toxicity study is to determine...
the median lethal dose (50% death) (LD₅₀) [10,11]. The results obtained from this study will provide the safety information of this essential oil before its commercialization as a natural anticancer product.

METHODS

Plant materials and distillation
C. burmannii stem bark was obtained from Jambu Village, Salatiga, Central Java, Indonesia. Then, stem bark was dried at the temperature (40°C) and ground to produce fine particle. The extraction of essential oil was done by a water steam distillation method. The extraction was done for at least 8 hrs, and the temperature was adjusted to maintain the boiling conditions. Sodium sulfate dehydrates (Na₂SO₄) was added to remove the remaining water in the essential oil to obtain 100% purity with the density of 1.015 mg/ml.

Gas chromatograph–mass spectrometer (GC-MS) analysis
GC-MS analysis was carried out on Agilent GC 6890N 5975B MSD system. The following conditions: Capillary column with nominal length 30.0 m, nominal diameter 250.00 um, nominal film thickness 0.25 um, and stationary phase HP-5MS 5% phenyl methyl siloxane. Helium was used as carrier gas at a constant flow of 1.0 mL/minute and an injection volume of 1 μl was employed (split ratio of 50:1), nominal initial pressure 8.75 psi (On), initial temp 300°C (On), split flow: 49.7 mL/minute and total flow 53.5 mL/minute. Total GC running time was 40 minutes.

Identification of components
Interpretation of mass spectrum GC-MS was conducted using the database of National Institute Standard and Technology (NIST). The spectrum of the unknown component was compared with the spectrum of the known components stored in the NIST library.

Animals
Female *Mus musculus* Balb/C strain mice weighing 20-30 g were obtained from the Integrated Research Development Institute Gadjah Mada University. The animals were kept in plastic cages in environmental conditions room temperature 22-24°C, with 12 hrs/12 hrs dark/light cycle, fed a mouse pellet diet (Comfeed Indonesia) and allowed to drink water ad libitum without distraction. All the animal handling protocols were approved by the Animal Ethics Committee of Faculty of Pharmacy, Bandung Institute of Technology.

Acute toxicity
Healthy mice have fasted overnight but allowed access to water *ad libitum* and were randomly divided into eight groups (n=5). The first group (control group) received distilled water only; the second group received Oleum Olivae. The other six groups were orally treated with a single dose of *C. burmannii* essential oil at 300, 500, 1000, 1500, 2000, or 3000 mg/kg BW, respectively. The doses in this acute toxicity study were based on the results of a range-finding study, where the observations on mortality and toxicity signs were made. All the treatments were administered by force feeding. Animals were observed for signs of toxicity, body weight, and mortality for a period of 14 days after treatment [12]. The toxicity signs and symptoms were observed in individual cages during the first 24 hrs after the essential oil administration and subsequently monitored daily throughout the duration of the study [12]. All observations are systematically recorded with individual records being maintained for each animal. Additional observations will be necessary if the animals continue to display signs of toxicity. Observations include changes in behavior pattern, autonomic and central nervous systems, somatomotor activity, eyes and mucous membranes, skin and fur, circulatory, and respiratory [3]. Salivation, diarrhea, tremors, convulsions, lethargy, sleep, and coma should be directed to observations. The principles and criteria summarized in the Humane Endpoints Guidance Document [2]. According to the mortality of rats observed within 14 days, the LD₅₀ value was calculated. At day 15, all surviving animals were sacrificed, internal organs were excised, and organ weights were measured.

Statistical analysis
The LD₅₀ was calculated using probit analysis (SPSS 11.5). All values were expressed as means±standard error of the mean and were analyzed by one-way analysis of variance followed by post-hoc test, and statistically significant findings were considered those in which *p*≤0.05.
RESULTS

Chromatogram of *C. burmannii* essential oil (Fig. 1)

???

Active compound of *C. burmannii* essential oil (Table 1)
The chromatogram of essential oil of cinnamon can be seen in Fig. 1. Active compound identified in *Cinnamomum burmannii* essential oil was shown on Table 1

Body weight

Individual weights of animals were determined shortly before the test substance is administered and weekly thereafter. Weight changes were calculated and recorded. Weight changes were presented in Table 2.

Sign of toxicity

Observation of sign of toxicity was presented in Table 3.

Platform in all treatment was significant difference (sig=0.04). The control treatment (aquadest) significant difference with dose 3000 mg/kg BW (sig=0.024) and dose 2000 mg/kg BW (sig=0.09) (Graph 1).

Grooming in all treatment was a significant difference (sig=0.01). There was significant difference the control group (aquadest) with dose 300 mg/kg BW (sig=0.006) (Graph 2).

Urination significant difference in all treatment (sig=0.000). However, there was no significant difference with control treatment (Graph 3).

Mortality

Mortality of mice in all treatment for 24 jam, the LD$_{50}$ value was analyzed by Reed-Muench method.

<table>
<thead>
<tr>
<th>Dose (mg/kg BW)</th>
<th>Body weight changes</th>
<th>Delta 1</th>
<th>Delta 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>Not observed</td>
<td>Not observed</td>
<td>Not observed</td>
</tr>
<tr>
<td>3000</td>
<td>1.4±1.52</td>
<td>2.3±2.6</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>2.2±0.45</td>
<td>2.8±1.3</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>2±1.73</td>
<td>3±1.64</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1.6±1.14</td>
<td>2±2.45</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>1.8±1.48</td>
<td>2±1.64</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>1.2±1.3</td>
<td>2.8±0.45</td>
<td></td>
</tr>
<tr>
<td>01 Olive</td>
<td>2.6±0.55</td>
<td>3.6±0.89</td>
<td></td>
</tr>
<tr>
<td>Aquadest</td>
<td>2±1.22</td>
<td>2±1.22</td>
<td></td>
</tr>
<tr>
<td>Sig</td>
<td>0.515</td>
<td>0.421</td>
<td></td>
</tr>
</tbody>
</table>

Delta 1=Body weight day-7−body weight day-0. Delta 2=Body weight day-14−body weight day-0.

Table 3: Observation of sign of toxicity in all group treatment except group 5000 mg/kg BW

<table>
<thead>
<tr>
<th>Observation</th>
<th>Result (%)</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straub</td>
<td>0</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Piloerection</td>
<td>0</td>
<td>No significant difference</td>
</tr>
<tr>
<td>ptosis</td>
<td>0</td>
<td>No significant difference</td>
</tr>
<tr>
<td>R Pineal</td>
<td>100</td>
<td>No significant difference</td>
</tr>
<tr>
<td>R cornea</td>
<td>100</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Lacrimation</td>
<td>0</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Cataleption</td>
<td>0</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Posture</td>
<td>100</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Hanging</td>
<td>100</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Retablissment</td>
<td>100</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Flexi</td>
<td>100</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Hafner</td>
<td>100</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Mortality</td>
<td>0</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Respiratory</td>
<td>100</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Defecation</td>
<td>Sig=0.065</td>
<td>No significant difference</td>
</tr>
</tbody>
</table>
Mortality was observed in the groups receiving 5000 mg/kg BW with five deaths (Table 4). From the acute toxicity data, LD₅₀ of C. burmannii Nees Ex Bl essential oil was estimated to be 3679.11 mg/kg BW.

Index of organ

After observation for 14-15 days, then the test animals were turned off and weighed organs and organ index is calculated obtained the following results shown in Table 5.

There is no significant difference on index of the organ in all treatment. Graph of index organ was presented in Graph 4.

DISCUSSION

A total of 40 different compounds were identified in C. burmannii essential oil by GC-MS analysis. The active principles with their retention time, molecular weight, and concentration (%) are presented in Table 1 and Fig. 1. The prevailing compounds were cinnamaldehyde (71.81%), trans-cinnamyl acetat (11.09%), coumarin (3.41%), and cineol (1.77%).

In this acute toxicity study, using Reed-Muench method, LD₅₀ of C. burmannii essential oil was estimated to be 3679.11 mg/kg BW. Reed-Muench method based on cumulative of life and died animals.

There was assumed that the died animals on that dose will have died on higher dose, and the life animals in the smaller dose [13].

LD₅₀ of Cinnamon oil was 3679.11 mg/kg BW thus the essential oil can be classified by Environmental Protection Agency (EPA) in practically non-toxic [10]. Categories of toxicity by EPA toxicity are very highly toxic with LD₅₀ value is <10 mg/kg BW, highly toxic with LD₅₀ value is 0-50 mg/kg BW, moderately toxic with LD₅₀ value is 51-500, slightly toxic with LD₅₀ value is 501-2000, and practically non-toxic with LD₅₀ value is >2000 [10]. Based on Gassel, 1995 category of toxicity are super toxic with LD₅₀ value is <5 mg/kg BW, extremely toxic with LD₅₀ value is 5-50 mg/kg BW, very toxic with LD₅₀ value is 50-500 mg/kg BW, moderate toxic with LD₅₀ value is 500-5000 mg/kg BW, mild toxic with LD₅₀ value is 5000-15000 mg/kg BW, and practically non-toxic with LD₅₀ value is >LD 15000. So, based on this classification of C. burmannii essential oil can be classified mild toxicity [14].

Based on International Labour Organization, chemicals can be allocated to one of five toxicity categories based on acute toxicity by the oral, dermal, or inhalation route according to the numeric criteria expressed as (approximate) LD₅₀ (oral, dermal) or LC₅₀ (inhalation) values. Acute toxicity hazard categories oral (mg/kg) exposure route LD₅₀ values defining categories are the category 1 until category 5 with LD₅₀ are 5, 50, 300, 2000, and 5000, respectively. C. burmannii essential oil includes category 5 with LD₅₀ the range of 2000-5000 mg/kg. Criteria for category 5 are intended to enable the identification of substances which are of relatively low acute toxicity hazard but which, under certain circumstances may present a danger to vulnerable populations. The specific criteria for category 5 are: First, reliable evidence is already available that indicates the LD₅₀ or LC₅₀ to be in the range of category 5 values or other animal studies or toxic effects in humans indicate a concern for human health or an acute nature. Second, through extrapolation, estimation, or measurement of data, if assignment to a more hazardous category is not warranted, and reliable information is available indicating significant toxic effects in humans, or any mortality is observed when tested up to category 4 values by the oral, inhalation, or dermal routes, or - where expert judgment confirms significant clinical signs of toxicity, when tested up to category 4 values, except for diarrhea, piberection, or an unroomed appearance, or - where expert judgment confirms reliable information indicating the potential for significant acute effects from other animal studies. Recognizing the need to protect animal welfare, testing in animals in category 5 ranges is discouraged and should only be considered when there is a strong likelihood that results of such a test would have direct relevance for protecting human health [15].

The acute oral toxicity study of C. burmannii essential oil was not caused a significant decrease in body weight at all treatment. An insignificant increase in body weight of test animals indicates that the administration of the essential oil does not affect the growth of the animals. No significant changes were observed in wellness parameters used for evaluation of toxicity. Behavioral pattern, skin, fur, eyes, mucous membrane, salivation, the sleep of the treated as well as the control animals were found to be normal. Tremors, lethargy, diarrhea, and coma did not occur in any of the animals. The body weights of all the mice were increased after the oral administration of C. burmannii essential oil, but the changes in the body weights were found to be statistically insignificant.

Administration of a single oral dose of the C. burmannii essential oil had produced some toxicity symptoms that there was the significant difference in all group treatment such as platform, grooming, and urination with significant difference 0.04, 0.01, and 0.000, respectively. Platform there was a significant difference between dose 3000 and 2000 mg/kg BW with control treatment (aquadest) and significant difference 0.024 and 0.09, respectively. It was shown curiosity mice. Changes in motor activity are a manifestation sedative activity, central nervous depressants, muscle relaxants, paralysis, or anesthesia [16].
Cinnamaldehyde elicits oral irritation that desensitizes across repeated applications and shows for the first time that these chemicals induce reciprocal cross-desensitization of oral irritation. Cinnamaldehyde has been previously reported to elicit oral irritation in a temporally desensitizing pattern [17-19,24]. The self-desensitizing effects of cinnamaldehyde may be mediated peripherally because TG cells exhibited reduced responses to repeated application of the higher concentration of cinnamaldehyde at 5 minutes interstimulus interval [25].

Coumarin is one of active compounds in C. burmannii caused mutations in bacterial assays [26-29]. However, in a UDS test, rats were reported negative results, and no adduct formation was found in rats after coumarin treatment. There was not observed induction of micronuclei in three micronucleus tests in vivo in mice [29-32]. It suggests that coumarin is not genotoxic in rodents [33].

According to Liang, 1996, one of the toxic symptoms shown to be a result of the muscarinic effect of cholinergic poisoning is lacrimation. According to Liang, 1996, one of the toxic symptoms shown to be a result of the muscarinic effect of cholinergic poisoning is lacrimation. Hypoactivity was suggested to be due to a decrease in locomotor activity controlled by the Central Neuro System [34]. In the literature, research said that coumarin is one of the active compounds in C. burmannii essential oil is toxic to the liver and kidney [35]. This chemical compound has been banned as a food additive in the United States and Western Europe. There is research since the mid-1800s on the toxic effects of coumarin on animals. In 1875 and 1877, it was found coumarin caused liver deterioration and blood vessel dilatation in a variety of warm and cold-blooded animals [27].

There are two procedures in OECD guidelines for testing of chemical acute toxicity procedure; they are up-down procedure (UDP) and fixed dose procedure (FDP). UDP only between 6 or 10 animals of one sex (fewer than either the LD₅₀/the FDP). In this research, we used one sex, i.e., female mice. Available literature the sexes are usually similar in their acute toxicity response and that of females are often more sensitive than males when acute toxicity differences do exist, thus obviating the need for both sexes to be tested in most cases. Unlike the FDP the UDP also estimates an LD₅₀ thus providing data directly applicable to all current hazard classification systems based on acute toxicity [36].

CONCLUSION

C. burmannii essential oil contains mainly compound cinnamaldehyde (78.18%), trans-cinnamyl acetate, cinnamaldehyde (3.1%), and cineol (1.77%). Acute oral toxicity conclusively indicates *C. burmannii* essential oil include category 5 practically non-toxic with LD₅₀ 3.6791.1 mg/kg BW.

REFERENCES

27. Haworth S, Lawlor T, Mortelmans K, Speck W, Zeiger E. *Salmonella*
29. NTP, 1993. Toxicology and Carcinogenesis Studies of Coumarin (CAS No. 91-64-5) in F344/N Rats and B6C3F1 Mice (gavage studies), 422. US Department of Health and Human Services.

32. Swenberg JA. Covalent binding index study on coumarin, Report of Laboratory of Molecular Carcinogenesis and Mutagenesis, University of North Carolina, Chapel Hill, NC 27599. Brussels: Submitted by European Flavour and Fragrance Association (EFFA); 2003.

