Module Handbook

	T
Module Name:	Reactor Physics
Module Level:	Bachelor
Abbreviation, if applicable:	FI3241
Sub-heading, if applicable:	
Courses included in the module, if applicable:	
Semester/term:	Third Year
Module coordinator(s):	
Lecturer(s):	
Language:	Bahasa Indonesia
Classification within the curriculum:	General Studies / Major Subject / Elective Studies
Teaching format / class hours per week during the semester:	3 hours of lecture
Workload:	3 hours of lecture
Credit Points:	3
Requirements:	FI2101 Fisika Matematika I (Mathematical Physics I)
	FI2201 Fisika Matematika II (Mathematical Physics II)
	FI2204 Fisika Modern (Modern Physics)
	Knowledge
	1. Demonstrate knowledge of various nuclear reaction types.
	2. Demonstate knowledge of solving a neutron transport equiation in nuclear
	reactor.
	 Demonstrate knowledge of nuclear reactor operation of various reactor types and its basic characteristics.
	cLait
Learning goals/competencies:	SKIII A Ability to analyze nuclear reactor criticality and its newer distribution by
	applying diffusion theory
	Ability to analyze composition changing of core reactor during nuclear reactor
	oneration
	6. Ability to analyze thermohydraulic aspect of nuclear by applying one channel
	7. Ability to analyze safety aspect of nuclear reactor by applying simply model.
Content:	Neutron nuclear reactions: neutron induced nuclear fission, neutron capture, neutron
	scattering, evaluated nuclear data library; neutron chain fission reactors: neutron chain fission
	reactions, criticality, classification of nuclear reactors; neutron transport theory: derivation of
	neutron transport theory, some general approximation to solve transport theory; neutron
	diffusion theory: derivation of neutron diffusion theory, solution for non-multiplying media,
	bare homogeneous reactor, reflected reactor, control rod, numerical solution; neutron energy
	distribution: analytical solution in infinite medium, multigroup calculation, resonance
	absorbtion, multigroup diffusion theory; nuclear reactor dynamics: delayed fission neutrons,
	point kinetic equation, solution of point kinetic equations, reactivity feedback; fuel burn-up
	analysis: change in fuel composition, xenon and samarium, fuel reprocessing and refuelling,
	radioactive waste; introduction to thermal-hydraulic and safety analysis: temperature
	distribution in coolant, fuel, and cladding, pressure drop, transient phenomena, safety aspect
	of NPP in general, accident analysis

Study/exam achievements:	Students are considered to be competent and pass if at least get 50% of maximum mark of the exams, homework, laboratory work, and research based
	learning.
Forms of Media:	Slides and LCD projectors, blackboards, lab.
Literature:	 Weston M. Stacey, Nuclear Reactor Physics, Edisi Pertama, John Wiley and Sons, 2001(Pustaka utama / main reference) J. J. Duderstadt, Nuclear Reactor Analysis, John Wiley & Son, 1976 (Pustaka utama / main reference) S. Glasstone & A. Sesonske, Nuclear Reactor Enginering, Van Nostrand Reinhold, 1981 (Pustaka pelengkap / complementary reference)
Notes	