Module Handbook

Module Name:	Mechanics
Module Level:	Bachelor
Abbreviation, if applicable:	FI2102
Sub-heading, if applicable:	
Courses included in the	
module, if applicable:	
Semester/term:	Second year
Module coordinator(s):	
Lecturer(s):	
Language:	Bahasa Indonesia
Classification within the	Conners Chudies (Maion Cubiest / Elective Chudies
curriculum:	General Studies / Major Subject / Elective Studies
Teaching format / class hours	
per week during the semester:	4 hours lectures, 2 hours tutorial
Workload:	4 hours lectures, 2 hours tutorial, 2 hours structured activities, 4 hours individual
	study, 16 weeks per semester, and total 192 hours a semester
Credit Points:	4 c.u
Requirements:	1. FI1101 Elementary Physics IA
	2. FI1201 Elementary Physics IIA
	3. MA1101 Mathematics IA
	4. MA1201 Mathematics IIA
	Knowledge:
	1. Ability to demonstrate knowledge of Newtonian mechanics of a single
	particle and system of particles
	2. Ability to identify, formulate Newtonian mechanics in non-inertial frame
	3. Ability to formulate Lagrange's and Hamiltonian equations to simple physical
	systems
	Skill:
Learning outcomes	1. Ability to solve a standard problem in Newtonian mechanics such as in
5	particle dynamics, oscilating system.
	2. Ability to analyze motion of particle in Newtonian mechanics, such as: central
	force and coupled system.
	3. Ability to solve problems on Newtonian mechanics in non-inertial frame
	4. Ability to apply and solve problem of Lagrange's and Hamiltonian equations
	to simple physical systems
	5. Ability to solve dynamical problems involving particles and system of particles
	by using the Lagrangian and Hamiltonian formulation.
Content:	Kinematics of Particle; Dynamics of Particle: Newton's Laws, work-energy
	theorem, conservative and non-conservative forces, functional forces; Central
	Force: characteristics force, Kepler's laws, planetary orbits; Dynamics of System of
	Particles: center of mass, collision, scattering; Non-inertial Reference System:
	translating coordinate system, rotating coordinate system; Lagrangian and
	Hamiltonian Dynamics: Lagrange's equation, Hamilton's equation
Study/exam achievements:	Students are considered to be competent and pass if at least get 50% of
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	maximum mark of the Mid-term Test, Final Examination. Quizzes. Home Work.
Forms of Media:	Slides and LCD projectors, blackboards
Literature:	1. Arva, A. P., An Introduction to Classical Mechanics. Prentice Hall. 1990.
	2. Symon, K. R., Mechanics, Addison Wesley, 1980.
	3. Fowles, G. R., Cassiday, G.L., Analytical Mechanics, Harcourt College

	Publishing, 1999
Notes	